46 research outputs found

    Analytical solutions of ac electrokinetics in interdigitated electrode arrays: Electric field, dielectrophoretic and traveling-wave dielectrophoretic forces

    No full text
    Analysis of the movement of particles in a nonuniform field requires accurate knowledge of the electric field distribution in the system. This paper describes a method for analytically solving the electric field distribution above interdigitated electrode arrays used for dielectrophoresis (DEP) and traveling wave dielectrophoresis (twDEP), using the Schwarz-Christoffel mapping method. The electric field solutions are used to calculate the dielectrophoretic force in both cases, and the traveling wave dielectrophoretic force and the electrorotational torque for the twDEP case. This method requires no approximations and can take into account the Neumann boundary condition used to represent an insulating lid and lower substrate. The analytical results of the electric field distributions are validated for different geometries by comparison with numerical simulations using the finite element method

    DNA deaminases: AIDing hormones in immunity and cancer

    Get PDF
    It is well established that hormones can cause cancer, much less known is how they induce this change in our somatic cells. This review highlights the recent finding that estrogen can exert its DNA-damaging potential by directly activating DNA deaminases. This recently discovered class of proteins deaminate cytosine to uracil in DNA, and are essential enzymes in the immune system. The enhanced production of a given DNA deaminase, induced by estrogen, can lead not only to a more active immune response, but also to an increase in mutations and oncogenic translocations. Identifying the direct molecular link between estrogen and a mutation event provides us with new targets for studying and possibly inhibiting the pathological side-effects of estrogen

    Vorläufer der Nationalökonomie

    No full text
    corecore