59 research outputs found

    A 10-bit Charge-Redistribution ADC Consuming 1.9 μW at 1 MS/s

    Get PDF
    This paper presents a 10 bit successive approximation ADC in 65 nm CMOS that benefits from technology scaling. It meets extremely low power requirements by using a charge-redistribution DAC that uses step-wise charging, a dynamic two-stage comparator and a delay-line-based controller. The ADC requires no external reference current and uses only one external supply voltage of 1.0 V to 1.3 V. Its supply current is proportional to the sample rate (only dynamic power consumption). The ADC uses a chip area of approximately 115--225 μm2. At a sample rate of 1 MS/s and a supply voltage of 1.0 V, the 10 bit ADC consumes 1.9 μW and achieves an energy efficiency of 4.4 fJ/conversion-step

    Biomedical heterogeneous data categorization and schema mapping toward data integration

    Get PDF
    Data integration is a well-motivated problem in the clinical data science domain. Availability of patient data, reference clinical cases, and datasets for research have the potential to advance the healthcare industry. However, the unstructured (text, audio, or video data) and heterogeneous nature of the data, the variety of data standards and formats, and patient privacy constraint make data interoperability and integration a challenge. The clinical text is further categorized into different semantic groups and may be stored in different files and formats. Even the same organization may store cases in different data structures, making data integration more challenging. With such inherent complexity, domain experts and domain knowledge are often necessary to perform data integration. However, expert human labor is time and cost prohibitive. To overcome the variability in the structure, format, and content of the different data sources, we map the text into common categories and compute similarity within those. In this paper, we present a method to categorize and merge clinical data by considering the underlying semantics behind the cases and use reference information about the cases to perform data integration. Evaluation shows that we were able to merge 88% of clinical data from five different sources

    Short Keynote Paper: Mainstreaming Personalized Healthcare-Transforming Healthcare Through New Era of Artificial Intelligence

    No full text
    Medicine has entered the digital era, driven by data from new modalities, especially genomics and imaging, as well as new sources such as wearables and Internet of Things. As we gain a deeper understanding of the disease biology and how diseases affect an individual, we are developing targeted therapies to personalize treatments. There is a need for technologies like Artificial Intelligence (AI) to be able to support predictions for personalized treatments. In order to mainstream AI in healthcare we will need to address issues such as explainability, liability and privacy. Developing explainable algorithms and including AI training in medical education are many of the solutions that can help alleviate these concerns

    Short Keynote Paper: Mainstreaming Personalized Healthcare-Transforming Healthcare through New Era of Artificial Intelligence

    No full text
    Medicine has entered the digital era, driven by data from new modalities, especially genomics and imaging, as well as new sources such as wearables and Internet of Things. As we gain a deeper understanding of the disease biology and how diseases affect an individual, we are developing targeted therapies to personalize treatments. There is a need for technologies like Artificial Intelligence (AI) to be able to support predictions for personalized treatments. In order to mainstream AI in healthcare we will need to address issues such as explainability, liability and privacy. Developing explainable algorithms and including AI training in medical education are many of the solutions that can help alleviate these concerns

    Written by Humans or Artificial Intelligence? That Is the Question

    No full text

    Blood culture results before and after antimicrobial administration

    No full text

    Host Response Biomarkers for Sepsis in the Emergency Room

    No full text
    This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2023. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2023. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from https://link.springer.com/bookseries/8901

    A Different Perspective on the Use of Sepsis Alert

    No full text

    Sepsis Performance Improvement Programs: From Evidence Toward Clinical Implementation

    No full text
    This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2022. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2022. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from https://link.springer.com/bookseries/8901

    Artificial Intelligence for Early Sepsis Detection A Word of Caution

    No full text
    • …
    corecore