100 research outputs found
Ultrasonic Evaluation of Polymers and Composites Using Air-Coupled Capacitance Transducres
It is often necessary to evaluate materials using non-contact ultrasonic techniques, for example when the test sample is hot, moving, or highly absorbent to conventional fluid couplants. Several non-contact methods are available, such as various optical techniques [1–3], which are generally expensive and require the sample to have optimized optical characteristics. Electro-magnetic acoustic transducers (EMATs) [4,5] and capacitance devices [6] may be used, but require an electrically conductive sample, and a small stand-off distance of a few millimeters or less. There has been much interest recently in the use of air-coupled transducers [7], which may be piezoelectric, using piezopolymers such as PVDF [8], piezocomposites of PZT and epoxy [9,10], or piezoceramics with impedance matching layers on the transducer face [11]. Another type of device is the electrostatic or capacitance transducer [12,13], which consists of a metallized polymer membrane against a backplate electrode to which a bias voltage is applied. Motion of the membrane causes the charge on the backplate to change, which may be detected using a suitable charge amplifier. These devices in general have a wider bandwidth than their piezoelectric counterparts, and improved sensitivity. The backplates are usually mechanically roughened metal, and it is therefore difficult to manufacture two identical devices. However, using a silicon backplate [14–17] and standard etching techniques, the surface of the backplate may be precisely controlled. Such a device is shown schematically in Figure 1. The backplate consists of a silicon wafer into which pits 40μm in diameter and 80μm apart have been anisotropically etched to a depth of approximately 40μm. A gold electrode is then evaporated onto the backplate, and a thin metallized polymer membrane is then placed next to the plate
Transport model analysis of the transverse momentum and rapidity dependence of pion interferometry at SPS energies
Based on the UrQMD transport model, the transverse momentum and the rapidity
dependence of the Hanbury-Brown-Twiss (HBT) radii , , as well
as the cross term at SPS energies are investigated and compared with
the experimental NA49 and CERES data. The rapidity dependence of the ,
, is weak while the is significantly increased at large
rapidities and small transverse momenta. The HBT "life-time" issue (the
phenomenon that the calculated value is larger than
the correspondingly extracted experimental data) is also present at SPS
energies.Comment: 17 pages, 11 figure
Systematic and Evolutionary Insights Derived from mtDNA COI Barcode Diversity in the Decapoda (Crustacea: Malacostraca)
Background: Decapods are the most recognizable of all crustaceans and comprise a dominant group of benthic invertebrates of the continental shelf and slope, including many species of economic importance. Of the 17635 morphologically described Decapoda species, only 5.4% are represented by COI barcode region sequences. It therefore remains a challenge to compile regional databases that identify and analyse the extent and patterns of decapod diversity throughout the world. Methodology/Principal Findings: We contributed 101 decapod species from the North East Atlantic, the Gulf of Cadiz and the Mediterranean Sea, of which 81 species represent novel COI records. Within the newly-generated dataset, 3.6% of the species barcodes conflicted with the assigned morphological taxonomic identification, highlighting both the apparent taxonomic ambiguity among certain groups, and the need for an accelerated and independent taxonomic approach. Using the combined COI barcode projects from the Barcode of Life Database, we provide the most comprehensive COI data set so far examined for the Order (1572 sequences of 528 species, 213 genera, and 67 families). Patterns within families show a general predicted molecular hierarchy, but the scale of divergence at each taxonomic level appears to vary extensively between families. The range values of mean K2P distance observed were: within species 0.285% to 1.375%, within genus 6.376% to 20.924% and within family 11.392% to 25.617%. Nucleotide composition varied greatly across decapods, ranging from 30.8 % to 49.4 % GC content. Conclusions/Significance: Decapod biological diversity was quantified by identifying putative cryptic species allowing a rapid assessment of taxon diversity in groups that have until now received limited morphological and systematic examination. We highlight taxonomic groups or species with unusual nucleotide composition or evolutionary rates. Such data are relevant to strategies for conservation of existing decapod biodiversity, as well as elucidating the mechanisms and constraints shaping the patterns observed.FCT - SFRH/BD/25568/ 2006EC FP6 - GOCE-CT-2005-511234 HERMESFCT - PTDC/MAR/69892/2006 LusomarBo
Population genomics of marine zooplankton
Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Bucklin, Ann et al. "Population Genomics of Marine Zooplankton." Population Genomics: Marine Organisms. Ed. Om P. Rajora and Marjorie Oleksiak. Springer, 2018. doi:10.1007/13836_2017_9.The exceptionally large population size and cosmopolitan biogeographic distribution that
distinguish many – but not all – marine zooplankton species generate similarly exceptional patterns of
population genetic and genomic diversity and structure. The phylogenetic diversity of zooplankton has
slowed the application of population genomic approaches, due to lack of genomic resources for closelyrelated
species and diversity of genomic architecture, including highly-replicated genomes of many
crustaceans. Use of numerous genomic markers, especially single nucleotide polymorphisms (SNPs), is
transforming our ability to analyze population genetics and connectivity of marine zooplankton, and
providing new understanding and different answers than earlier analyses, which typically used
mitochondrial DNA and microsatellite markers. Population genomic approaches have confirmed that,
despite high dispersal potential, many zooplankton species exhibit genetic structuring among geographic
populations, especially at large ocean-basin scales, and have revealed patterns and pathways of population
connectivity that do not always track ocean circulation. Genomic and transcriptomic resources are
critically needed to allow further examination of micro-evolution and local adaptation, including
identification of genes that show evidence of selection. These new tools will also enable further
examination of the significance of small-scale genetic heterogeneity of marine zooplankton, to
discriminate genetic “noise” in large and patchy populations from local adaptation to environmental
conditions and change.Support was provided by the
US National Science Foundation to AB and RJO (PLR-1044982) and to RJO (MCB-1613856); support to
IS and MC was provided by Nord University (Norway)
Air-Coupled Generation and Detection of Ultrasonic Bulk Waves in Metals Using Micromachined Capacitance Transducers
NRC publication: Ye
Ultrasonic imaging of solid surfaces using a focussed air-coupled capacitance transducer
NRC publication: Ye
Non-Contact Ultrasonic Tomography Imaging Using Air-Coupled Capacitance Transducers
Tomographic reconstruction [1] is a method of imaging by illuminating the object in many different directions in the plane of interest, using X-rays or ultrasound. An image is formed from changes in a physical variable occurring in the planar cross section. Typically, changes in propagation delay or arrival time are used to reconstruct an image of the slowness variations (where slowness is the inverse of velocity), or changes in signal amplitude are used to produce an attenuation image.</p
- …