7 research outputs found

    Bioincompatible Impact of Different Peritoneal Dialysis Fluid Components and Therapeutic Interventions as Tested in a Rat Peritoneal Dialysis Model

    Get PDF
    Peritoneal dialysis (PD) is associated with functional and structural changes of the peritoneal membrane. In this paper, we describe the impact of different factors contributing to peritoneal incompatibility of PD fluid installation including presence of a catheter, volume loading, and the PD fluid components itself. These factors initiate recruitment and activation of peritoneal immune cells such as macrophages and mast cells, as well as activation of peritoneal cells as mesothelial cells in situ. We provide an overview of PD-associated changes as seen in our rat PD-exposure model. Since these changes are partly reversible, we finally discuss therapeutic strategies in the rat PD model with possible consequences of long-term PD in the relevant human setting

    Factors contributing to peritoneal tissue remodeling in peritoneal dialysis

    No full text
    Peritoneal dialysis (PD) is associated with functional and structural changes of the peritoneal membrane. In this review we describe factors contributing to peritoneal tissue remodeling, including uremia, peritonitis, volume loading, the presence of a catheter, and the PD fluid itself. These factors initiate recruitment and activation of peritoneal cells such as macrophages and mast cells, as well as activation of peritoneal cells, including mesothelial cells, fibroblasts, and endothelial cells. We provide an overview of cytokines, growth factors, and other mediators involved in PD-associated changes. Activation of downstream pathways of cellular modulators can induce peritoneal tissue remodeling, leading to ultrafiltration loss. Identification of molecular pathways, cells, and cytokines involved in the development of angiogenesis, fibrosis, and membrane failure may lead to innovative therapeutic strategies that can protect the peritoneal membrane from the consequences of long-term PD

    Long-term intervention with heparins in a rat model of peritoneal dialysis

    No full text
    BACKGROUND: Peritoneal dialysis (PD) is associated with functional and structural alterations of the peritoneal membrane, particularly new vessel formation and fibrosis. In addition to anticoagulant effects, heparin displays anti-inflammatory and angiostatic properties. Therefore, the effects of administration of heparins on function and morphology of the peritoneal membrane were studied in a rat PD model. METHODS: Rats received 10 mL conventional PD fluid (PDF) daily, with or without the addition of unfractionated heparin (UFH) or low molecular weight heparin (LMWH) in the PDF (1 mg/10 mL intraperitoneally) via a mini access port. Untreated rats served as controls. After 5 weeks, a 90-minute functional peritoneal transport test was performed and tissues and peritoneal leukocytes were taken. RESULTS: PD treatment induced loss of ultrafiltration (p<0.01), a twofold increase in glucose absorption (p<0.03), increased urea transport (p<0.02), and loss of sodium sieving (p<0.03), which were also found in the PDF+heparin groups. Increased peritoneal cell influx and hyaluronan production (p<0.02) as well as an exchange of mast cells and eosinophils for neutrophils after PD treatment were observed in PD rats; addition of heparin did not affect those changes. Mesothelial regeneration, submesothelial blood vessel and matrix formation, and accumulation of tissue macrophages were seen in PD animals. Spindle-shaped vimentin-positive and cytokeratin-negative cells indicated either partial injury and denudation of mesothelial cells or epithelial-to-mesenchymal transition. Neither UFH nor LMWH affected any of these morphological changes. CONCLUSION: Within 5 weeks, PD treatment induces a chronic inflammatory condition in the peritoneum, evidenced by high transport, leukocyte recruitment, tissue remodeling, and induction of spindle-shaped cells in the mesothelium. Addition of LMWH or UFH to the PDF did not prevent these adverse PDF-induced peritoneal changes
    corecore