719 research outputs found
Effect of eicosapentaenoic and docosahexaenoic acid on resting and exercise-induced inflammatory and oxidative stress biomarkers: a randomized, placebo controlled, cross-over study
<p>Abstract</p> <p>Background</p> <p>The purpose of the present investigation was to determine the effects of EPA/DHA supplementation on resting and exercise-induced inflammation and oxidative stress in exercise-trained men. Fourteen men supplemented with 2224 mg EPA+2208 mg DHA and a placebo for 6 weeks in a random order, double blind cross-over design (with an 8 week washout) prior to performing a 60 minute treadmill climb using a weighted pack. Blood was collected pre and post exercise and analyzed for a variety of oxidative stress and inflammatory biomarkers. Blood lactate, muscle soreness, and creatine kinase activity were also measured.</p> <p>Results</p> <p>Treatment with EPA/DHA resulted in a significant increase in blood levels of both EPA (18 ± 2 μmol·L<sup>-1 </sup>vs. 143 ± 23 μmol·L<sup>-1</sup>; p < 0.0001) and DHA (67 ± 4 μmol·L<sup>-1 </sup>vs. 157 ± 13 μmol·L<sup>-1</sup>; p < 0.0001), while no differences were noted for placebo. Resting levels of CRP and TNF-α were lower with EPA/DHA compared to placebo (p < 0.05). Resting oxidative stress markers were not different (p > 0.05). There was a mild increase in oxidative stress in response to exercise (XO and H<sub>2</sub>O<sub>2</sub>) (p < 0.05). No interaction effects were noted. However, a condition effect was noted for CRP and TNF-α, with lower values with the EPA/DHA condition.</p> <p>Conclusion</p> <p>EPA/DHA supplementation increases blood levels of these fatty acids and results in decreased resting levels of inflammatory biomarkers in exercise-trained men, but does not appear necessary for exercise-induced attenuation in either inflammation or oxidative stress. This may be due to the finding that trained men exhibit a minimal increase in both inflammation and oxidative stress in response to moderate duration (60 minute) aerobic exercise.</p
Effect of a liquid multi-vitamin-mineral supplement on anaerobic exercise performance
This is the publisher's version, also found at http://ehis.ebscohost.com/ehost/detail?sid=10f44d64-ddff-470e-a85a-b4c63b016efa%40sessionmgr10&vid=1&hid=2&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#db=s3h&AN=20338872The purpose of this study was to determine if supplementation with a
liquid multi-vitamin/mineral would improve anaerobic exercise performance.
Fourteen resistance-trained men performed a 30-second cycle
sprint and one set of squat exercise on 2 separate days before and following
8 weeks of supplementation with either a liquid multi-vitamin/
mineral or a placebo. Heart rate, perceived exertion, blood lactate, peak
and mean power, and rate of fatigue were determined for all tests. No
differences were noted for any variable (P > 0.05). When controlling for
presupplementation values, however, a decreased rate of fatigue was
noted for both exercise tests following the multi-vitamin/mineral supplementation.
These data suggest that in resistance trained men consuming
a nutritionally sound diet, supplementation with a liquid
multi-vitamin/mineral does not favorably impact most anaerobic exercise
performances. Such supplementation, however, may result in a
minor decreased rate of fatigue. It appears that, in terms of improved
short duration anaerobic exercise performance, supplemental micronutrients
may not be efficient ergogenic agents for well-trained individuals
consuming an adequate diet
Effects of Moderate-Volume, High-Load Lower-Body Resistance Training on Strength and Function in Persons with Parkinson's Disease: A Pilot Study
Background. Resistance training research has demonstrated positive effects for persons with Parkinson's disease (PD), but the number of acute training variables that can be manipulated makes it difficult to determine the optimal resistance training program. Objective. The purpose of this investigation was to examine the effects of an 8-week resistance training intervention on strength and function in persons with PD. Methods. Eighteen men and women were randomized to training or standard care for the 8-week intervention. The training group performed 3 sets of 5–8 repetitions of the leg press, leg curl, and calf press twice weekly. Tests included leg press strength relative to body mass, timed up-and-go, six-minute walk, and Activities-specific Balance Confidence questionnaire. Results. There was a significant group-by-time effect for maximum leg press strength relative to body mass, with the training group significantly increasing their maximum relative strength (P < .05). No other significant interactions were noted (P > .05). Conclusions. Moderate volume, high-load weight training is effective for increasing lower-body strength in persons with PD
Effect of the dietary supplement Meltdown on catecholamine secretion, markers of lipolysis, and metabolic rate in men and women: a randomized, placebo controlled, cross-over study
<p>Abstract</p> <p>Background</p> <p>We have recently reported that the dietary supplement Meltdown<sup>® </sup>increases plasma norepinephrine (NE), epinephrine (EPI), glycerol, free fatty acids (FFA), and metabolic rate in men. However, in that investigation measurements ceased at 90 minutes post ingestion, with values for blood borne variables peaking at this time. It was the purpose of the present investigation to extend the time course of measurement to 6 hours, and to include women within the design to determine if sex differences to treatment exist.</p> <p>Methods</p> <p>Ten men (24 ± 4 yrs) and 10 women (22 ± 2 yrs) ingested Meltdown<sup>® </sup>or a placebo, using a randomized, cross-over design with one week separating conditions. Blood samples were collected immediately before supplementation and at one hour intervals through 6 hours post ingestion. A standard meal was provided after the hour 3 collection. Samples were assayed for EPI, NE, glycerol, and FFA. Five minute breath samples were collected at each time for measurement of metabolic rate and substrate utilization. Area under the curve (AUC) was calculated. Heart rate and blood pressure were recorded at all times. Data were also analyzed using a 2 (sex) × 2 (condition) × 7 (time) repeated measures analysis of variance, with Tukey <it>post hoc </it>testing.</p> <p>Results</p> <p>No sex × condition interactions were noted for AUC for any variable (p > 0.05). Hence, AUC data are collapsed across men and women. AUC was greater for Meltdown<sup>® </sup>compared to placebo for EPI (367 ± 58 pg·mL<sup>-1</sup>·6 hr<sup>-1 </sup>vs. 183 ± 27 pg·mL<sup>-1</sup>·6 hr<sup>-1</sup>; p = 0.01), NE (2345 ± 205 pg·mL<sup>-1</sup>·6 hr<sup>-1 </sup>vs. 1659 ± 184 pg·mL<sup>-1</sup>·6 hr<sup>-1</sup>; p = 0.02), glycerol (79 ± 8 μg·mL<sup>-1</sup>·6 hr<sup>-1 </sup>vs. 59 ± 6 μg·mL<sup>-1</sup>·6 hr<sup>-1</sup>; p = 0.03), FFA (2.46 ± 0.64 mmol·L<sup>-1</sup>·6 hr<sup>-1 </sup>vs. 1.57 ± 0.42 mmol·L<sup>-1</sup>·6 hr<sup>-1</sup>; p = 0.05), and kilocalorie expenditure (439 ± 26 kcal·6 hrs<sup>-1 </sup>vs. 380 ± 14 kcal·6 hrs<sup>-1</sup>; p = 0.02). No effect was noted for substrate utilization (p = 0.39). Both systolic and diastolic blood pressure (p < 0.0001; 1–16 mmHg), as well as heart rate (p = 0.01; 1–9 bpm) were higher for Meltdown<sup>®</sup>. No sex × condition × time interactions were noted for any variable (p > 0.05).</p> <p>Conclusion</p> <p>Ingestion of Meltdown<sup>® </sup>results in an increase in catecholamine secretion, lipolysis, and metabolic rate in young men and women, with a similar response for both sexes. Meltdown<sup>® </sup>may prove to be an effective intervention strategy for fat loss, assuming individuals are normotensive and their treatment is monitored by a qualified health care professional.</p
- …