12,122 research outputs found
Studies of superconductivity and structure for CaC6 to pressures above 15 GPa
The dependence of the superconducting transition temperature Tc of CaC6 has
been determined as a function of hydrostatic pressure in both helium-loaded gas
and diamond-anvil cells to 0.6 and 32 GPa, respectively. Following an initial
increase at the rate +0.39(1) K/GPa, Tc drops abruptly from 15 K to 4 K at 10
GPa. Synchrotron x-ray measurements to 15 GPa point to a structural transition
near 10 GPa from a rhombohedral to a higher symmetry phase
Superconductivity at 17 K in Yttrium Metal under Nearly Hydrostatic Pressures to 89 GPa
In an experiment in a diamond anvil cell utilizing helium pressure medium,
yttrium metal displays a superconducting transition temperature which increases
monotonically from Tc ? 3.5 K at 30 GPa to 17 K at 89.3 GPa, one of the highest
transition temperatures for any elemental superconductor. The pressure
dependence of Tc differs substantially from that observed in previous studies
under quasihydrostatic pressure to 30 GPa. Remarkably, the dependence of Tc on
relative volume V/Vo is linear over the entire pressure range above 33 GPa,
implying that higher values of Tc are likely at higher pressures. For the
trivalent metals Sc, Y, La, Lu there appears to be some correlation between Tc
and the ratio of the Wigner-Seitz radius to the ion core radius.Comment: submitted for publicatio
Pressure-Induced Superconductivity in Sc to 74 GPa
Using a diamond anvil cell with nearly hydrostatic helium pressure medium we
have significantly extended the superconducting phase diagram Tc(P) of Sc, the
lightest of all transition metals. We find that superconductivity is induced in
Sc under pressure, Tc increasing monotonically to 8.2 K at 74.2 GPa. The Tc(P)
dependences of the trivalent d-electron metals Sc, Y, La, and Lu are compared
and discussed within a simple s-d charge transfer framework.Comment: to be published in Phys. Rev. B (Brief Reports
Pressure-induced Superconductivity in CaLi2
A search for superconductivity has been carried out on the hexagonal
polymorph of Laves-phase CaLi2, a compound for which Feng, Ashcroft, and
Hoffmann predict highly anomalous behavior under pressure. No superconductivity
is observed above 1.10 K at ambient pressure. However, high-pressure ac
susceptibility and electrical resistivity studies to 81 GPa reveal bulk
superconductivity in CaLi2 at temperatures as high as 13 K. The normal-state
resistivity shows a dramatic increase with pressure.Comment: bulk superconductivity in CaLi2 now confirme
Recent Studies in Superconductivity at Extreme Pressures
Studies of the effect of high pressure on superconductivity began in 1925
with the seminal work of Sizoo and Onnes on Sn to 0.03 GPa and have continued
up to the present day to pressures in the 200 - 300 GPa range. Such enormous
pressures cause profound changes in all condensed matter properties, including
superconductivity. In high pressure experiments metallic elements, Tc values
have been elevated to temperatures as high as 20 K for Y at 115 GPa and 25 K
for Ca at 160 GPa. These pressures are sufficient to turn many insulators into
metals and magnetics into superconductors. The changes will be particularly
dramatic when the pressure is sufficient to break up one or more atomic shells.
Recent results in superconductivity to Mbar pressures wll be discussed which
exemplify the progress made in this field over the past 82 years.Comment: Proceedings of the 21st AIRAPT and 45th EHPRG International
Conference on High Pressure Science and Technology, Catania, Italy, Sept.
17-21, 200
Improved method of producing oxide-dispersion-strengthened alloys
Dispersion strengthened alloys having the required properties are produced by a process in which the refractory particles are less than 100 to 500 A thick. These are fine enough to ensure the strength characteristics without appreciable degradation of other characteristics. The alloy consists of a matrix metal and a dispersoid metal
Microscopic theory of glassy dynamics and glass transition for molecular crystals
We derive a microscopic equation of motion for the dynamical orientational
correlators of molecular crystals. Our approach is based upon mode coupling
theory. Compared to liquids we find four main differences: (i) the memory
kernel contains Umklapp processes, (ii) besides the static two-molecule
orientational correlators one also needs the static one-molecule orientational
density as an input, where the latter is nontrivial, (iii) the static
orientational current density correlator does contribute an anisotropic,
inertia-independent part to the memory kernel, (iv) if the molecules are
assumed to be fixed on a rigid lattice, the tensorial orientational correlators
and the memory kernel have vanishing l,l'=0 components. The resulting mode
coupling equations are solved for hard ellipsoids of revolution on a rigid
sc-lattice. Using the static orientational correlators from Percus-Yevick
theory we find an ideal glass transition generated due to precursors of
orientational order which depend on X and p, the aspect ratio and packing
fraction of the ellipsoids. The glass formation of oblate ellipsoids is
enhanced compared to that for prolate ones. For oblate ellipsoids with X <~ 0.7
and prolate ellipsoids with X >~ 4, the critical diagonal nonergodicity
parameters in reciprocal space exhibit more or less sharp maxima at the zone
center with very small values elsewhere, while for prolate ellipsoids with 2 <~
X <~ 2.5 we have maxima at the zone edge. The off-diagonal nonergodicity
parameters are not restricted to positive values and show similar behavior. For
0.7 <~ X <~ 2, no glass transition is found. In the glass phase, the
nonergodicity parameters show a pronounced q-dependence.Comment: 17 pages, 12 figures, accepted at Phys. Rev. E. v4 is almost
identical to the final paper version. It includes, compared to former
versions v2/v3, no new physical content, but only some corrected formulas in
the appendices and corrected typos in text. In comparison to version v1, in
v2-v4 some new results have been included and text has been change
Anomalous He-Gas High-Pressure Studies on Superconducting LaO1-xFxFeAs
AC susceptibility measurements have been carried out on superconducting
LaO1-xFxFeAs for x=0.07 and 0.14 under He-gas pressures to about 0.8 GPa. Not
only do the measured values of dTc/dP differ substantially from those obtained
in previous studies using other pressure media, but the Tc(P) dependences
observed depend on the detailed pressure/temperature history of the sample. A
sizeable sensitivity of Tc(P) to shear stresses provides a possible
explanation
- …