6,763 research outputs found
Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach
We develop a general approach to the nonequilibrium dynamics of quantum
impurity systems for arbitrary coupling strength. The numerical renormalization
group is used to generate a complete basis set necessary for the correct
description of the time evolution. We benchmark our method with the exact
analytical solution for the resonant-level model. As a first application, we
investigate the equilibration of a quantum dot subject to a sudden change of
the gate voltage and external magnetic field. Two distinct relaxation times are
identified for the spin and charge dynamics.Comment: 5 pages, 5 figure
The SU(3) Beta Function from Numerical Stochastic Perturbation Theory
The SU(3) beta function is computed from Wilson loops to 20th order numerical
stochastic perturbation theory. An attempt is made to include massless
fermions, whose contribution is known analytically to 4th order. The question
whether the theory admits an infrared stable fixed point is addressed.Comment: 10 pages, 7 figures, version to be published in Physics Letters
Photoemission study of the spin-density wave state in thin films of Cr
Angle-resolved photoemission (PE) was used to characterize the spin-density
wave (SDW) state in thin films of Cr grown on W(110). The PE data were analysed
using results of local spin density approximation layer-Korringa-Kohn-Rostoker
calculations. It is shown that the incommensurate SDW can be monitored and
important parameters of SDW-related interactions, such as coupling strength and
energy of collective magnetic excitations, can be determined from the
dispersion of the renormalized electronic bands close to the Fermi energy. The
developed approach can readily be applied to other SDW systems including
magnetic multilayer structures.Comment: 4 figure
High water use plant options for the Fitzgerald River catchment : a case study
This report summarises the outcomes of a project initiated to examine the potential to integrate high water use plant options into existing farm systems to combat rising watertables and reduce salinity and waterlogging. Planting options investigated include commercial trees, perennials, fodder shrubs, annual crops and native grasses. The research uses a new GIS based methodology for undertaking catchment scale land capability analyses
- …