47 research outputs found

    Location-Dependent Effects of Inhibition on Local Spiking in Pyramidal Neuron Dendrites

    Get PDF
    Cortical computations are critically dependent on interactions between pyramidal neurons (PNs) and a menagerie of inhibitory interneuron types. A key feature distinguishing interneuron types is the spatial distribution of their synaptic contacts onto PNs, but the location-dependent effects of inhibition are mostly unknown, especially under conditions involving active dendritic responses. We studied the effect of somatic vs. dendritic inhibition on local spike generation in basal dendrites of layer 5 PNs both in neocortical slices and in simple and detailed compartmental models, with equivalent results: somatic inhibition divisively suppressed the amplitude of dendritic spikes recorded at the soma while minimally affecting dendritic spike thresholds. In contrast, distal dendritic inhibition raised dendritic spike thresholds while minimally affecting their amplitudes. On-the-path dendritic inhibition modulated both the gain and threshold of dendritic spikes depending on its distance from the spike initiation zone. Our findings suggest that cortical circuits could assign different mixtures of gain vs. threshold inhibition to different neural pathways, and thus tailor their local computations, by managing their relative activation of soma- vs. dendrite-targeting interneurons

    Book reviews

    Get PDF
    The books reviewed in this article are: Barton, S., Gonzalez, R., & Tomlinson, P. (2012). Therapeutic residential child care for children and young people: An attachment and trauma-informed model for practice. London: Jessica Kingsley, 287 pp., ISBN 978 1 84905 255 9 (pb), Β£22.99. Curran, S., Harrison, R., Mackinnon, D. eds. (2013). Working with Young People (2nd ed). Milton Keynes: The Open University. 223pp., ISBN 978-1-4462-7328-9, Β£24.99. Bettelheim, B. (1950). Love is not enough: the treatment of emotionally disturbed children. Glencoe IL: Free Press 0 02 903280 6 Reissued with the kind permission of Children Webmag - This piece was originally written by Robert Shaw for the August 2009 issue of Children Webmag, which can be accessed on URL: http://www.childrenwebmag.com/2009/0

    Calcium Handling in Human Induced Pluripotent Stem Cell Derived Cardiomyocytes

    Get PDF
    BACKGROUND: The ability to establish human induced pluripotent stem cells (hiPSCs) by reprogramming of adult fibroblasts and to coax their differentiation into cardiomyocytes opens unique opportunities for cardiovascular regenerative and personalized medicine. In the current study, we investigated the Ca(2+)-handling properties of hiPSCs derived-cardiomyocytes (hiPSC-CMs). METHODOLOGY/PRINCIPAL FINDINGS: RT-PCR and immunocytochemistry experiments identified the expression of key Ca(2+)-handling proteins. Detailed laser confocal Ca(2+) imaging demonstrated spontaneous whole-cell [Ca(2+)](i) transients. These transients required Ca(2+) influx via L-type Ca(2+) channels, as demonstrated by their elimination in the absence of extracellular Ca(2+) or by administration of the L-type Ca(2+) channel blocker nifedipine. The presence of a functional ryanodine receptor (RyR)-mediated sarcoplasmic reticulum (SR) Ca(2+) store, contributing to [Ca(2+)](i) transients, was established by application of caffeine (triggering a rapid increase in cytosolic Ca(2+)) and ryanodine (decreasing [Ca(2+)](i)). Similarly, the importance of Ca(2+) reuptake into the SR via the SR Ca(2+) ATPase (SERCA) pump was demonstrated by the inhibiting effect of its blocker (thapsigargin), which led to [Ca(2+)](i) transients elimination. Finally, the presence of an IP3-releasable Ca(2+) pool in hiPSC-CMs and its contribution to whole-cell [Ca(2+)](i) transients was demonstrated by the inhibitory effects induced by the IP3-receptor blocker 2-Aminoethoxydiphenyl borate (2-APB) and the phospholipase C inhibitor U73122. CONCLUSIONS/SIGNIFICANCE: Our study establishes the presence of a functional, SERCA-sequestering, RyR-mediated SR Ca(2+) store in hiPSC-CMs. Furthermore, it demonstrates the dependency of whole-cell [Ca(2+)](i) transients in hiPSC-CMs on both sarcolemmal Ca(2+) entry via L-type Ca(2+) channels and intracellular store Ca(2+) release

    Active properties of neocortical pyramidal neuron dendrites

    Full text link
    Dendrites are the main recipients of synaptic inputs and are important sites determining neurons input-output functions. This review focuses on thin neocortical dendrites, which receive the vast majority of synaptic inputs in cortex but also have specialized electrogenic properties. We present a simplified working model biophysical scheme of pyramidal neurons that attempts to capture the essence of their dendritic function, including the ability to behave under plausible conditions as dynamic computational sub-units. We emphasize the electrogenic capabilities of NMDA receptors (NMDA-Rs), as these transmitter-gated channels seem to provide the major nonlinear depolarizing drive in thin dendrites, even allowing full-blown NMDA spikes. We show how apparent discrepancies in experimental findings can be reconciled and discuss the current status of dendritic spikes in vivo; a dominant NMDA-R contribution would mean the input-output relations of thin dendrites are dynamically set by network activity, and cannot be fully predicted by purely reductionist approaches

    Active properties of neocortical pyramidal neuron dendrites

    Full text link
    Dendrites are the main recipients of synaptic inputs and are important sites determining neurons input-output functions. This review focuses on thin neocortical dendrites, which receive the vast majority of synaptic inputs in cortex but also have specialized electrogenic properties. We present a simplified working model biophysical scheme of pyramidal neurons that attempts to capture the essence of their dendritic function, including the ability to behave under plausible conditions as dynamic computational sub-units. We emphasize the electrogenic capabilities of NMDA receptors (NMDA-Rs), as these transmitter-gated channels seem to provide the major nonlinear depolarizing drive in thin dendrites, even allowing full-blown NMDA spikes. We show how apparent discrepancies in experimental findings can be reconciled and discuss the current status of dendritic spikes in vivo; a dominant NMDA-R contribution would mean the input-output relations of thin dendrites are dynamically set by network activity, and cannot be fully predicted by purely reductionist approaches

    Action potential initiation and propagation in rat neocortical pyramidal neurons

    Full text link
    1. Initiation and propagation of action potentials evoked by extracellular synaptic stimulation was studied using simultaneous dual and triple patch pipette recordings from different locations on neocortical layer 5 pyramidal neurons in brain slices from 4-week-old rats (P26-30) at physiological temperatures. 2. Simultaneous cell- attached and whole-cell voltage recordings from the apical trunk (up to 700 microns distal to the soma) and the soma indicated that proximal synaptic stimulation (layer 4) initiated action potentials first at the soma, whereas distal stimulation (upper layer 2/3) could initiate dendritic regenerative potentials prior to somatic action potentials following stimulation at higher intensity. 3. Somatic action potentials, once initiated, propagated back into the apical dendrites in a decremented manner which was frequency dependent. The half-width of back propagating action potentials increased and their maximum rate of rise decreased with distance from the soma, with the peak of these action potentials propagating with a conduction velocity of approximately 0.5 m s-1. 4. Back-propagation of action potentials into the dendritic tree was associated with dendritic calcium electrogenesis, which was particularly prominent during bursts of somatic action potentials. 5. When dendritic regenerative potentials were evoked prior to somatic action potentials, the more distal the dendritic recording was made from the soma the longer the time between the onset of the dendritic regenerative potential relative to somatic action potential. This suggested that dendritic regenerative potentials were initiated in the distal apical dendrites, possibly in the apical tuft. 6. At any one stimulus intensity, the initiation of dendritic regenerative potentials prior to somatic action potentials could fluctuate, and was modulated by depolarizing somatic or hyperpolarizing dendritic current injection. 7. Dendritic regenerative potentials could be initiated prior to somatic action potentials by dendritic current injections used to simulate the membrane voltage change that occurs during an EPSP. Initiation of these dendritic potentials was not affected by cadmium (200 microM), but was blocked by TTX (1 microM). 8. Dendritic regenerative potentials in some experiments were initiated in isolated from somatic action potentials. The voltage change at the soma in response to these dendritic regenerative events was small and subthreshold, showing that dendritic regenerative events are strongly attenuated as they spread to the soma. 9. Simultaneous whole-cell recordings from the axon initial segment and the soma indicated that synaptic stimulation always initiated action potentials first in the axon. The further the axonal recording was made from the soma the greater the time delay between axonal and somatic action potentials, indicating a site of action potential initiation in the axon at least 30 microns distal to the soma. 10. Simultaneous whole-cell recordings from the apical dendrite, soma and axon initial segment showed that action potentials were always initiated in the axon prior to the soma, and with the same latency difference, independent of whether dendritic regenerative potentials were initiated or not. 11. It is concluded that both the apical dendrites and the axon of neocortical layer 5 pyramidal neurons in P26-30 animals are capable of initiating regenerative potentials. Regenerative potentials initiated in dendrites, however, are significantly attenuated as they spread to the soma and axon. As a consequence, action potentials are always initiated in the axon before the soma, even when synaptic activation is intense enough to initiate dendritic regenerative potentials. Once initiated, the axonal action potentials are conducted orthogradely into the axonal arbor and retrogradely into the dendritic tree

    Spatio-temporal profile of dendritic calcium transients evoked by back-propagating action potentials in rat neocortical pyramidal neurones

    Full text link
    1. Simultaneous measurements of intracellular free calcium concentration ([Ca2+]i) and intrasomatic and intradendritic membrane potential (Vm) were performed using fura-2 fluorimetry and whole-cell recording in neocortical layer V pyramidal neurones in rat brain slices. 2. Back-propagating action potentials (APs) evoked [Ca2+]i transients in the entire neurone including the soma, the axon initial segment, the apical dendrite up to the distal tuft branches, and the oblique and basal dendrites, indicating that following suprathreshold activation the entire dendritic tree is depolarized sufficiently to open voltage-dependent calcium channels (VDCCs). 3. The [Ca2+]i transient peak evoked by APs showed large differences between various compartments of the neurone. Following a single AP, up to 6-fold differences were measured, ranging from 43 +/- 14 nM in the soma to 267 +/- 109 nM in the basal dendrites. 4. Along the main apical dendrite, the [Ca2+]i transients evoked by single APs or trains of APs had the largest amplitude and the fastest decay in the proximal region; the [Ca2+]i transient peak and decay time constant following a single AP were 128 +/- 25 nM and 420 +/- 150 ms, respectively, and following a train of five APs (at 10-12 Hz), 710 +/- 214 nM and 390 +/- 150 ms, respectively. The [Ca2+]i transients gradually decreased in amplitude and broadened in more distal portions of the apical dendrite up to the main bifurcation. 5. In the apical tuft branches, the profile of the [Ca2+]i transients was dependent on AP frequency

    Spatiotemporally graded NMDA spike/plateau potentials in basal dendrites of neocortical pyramidal neurons

    Full text link
    graded NMDA spike/plateau potentials in basal dendrites of neocortical pyramidal neurons. J Neurophysiol 99: 2584–2601, 2008. First published March 12, 2008; doi:10.1152/jn.00011.2008. Glutamatergic inputs clustered over οΏ½20–40 οΏ½m can elicit local N-methyl-D-aspartate (NMDA) spike/plateau potentials in terminal dendrites of cortical pyramidal neurons, inspiring the notion that a single terminal dendrite can function as a decision-making computational subunit. A typical terminal basal dendrite is οΏ½100–200 οΏ½m long: could it function as multiple decision-making subunits? We test this by sequential focal stimulation of multiple sites along terminal basal dendrites of layer 5 pyramidal neurons in rat somatosensory cortical brain slices, using iontophoresis or uncaging of brief glutamate pulses. There was an approximately sevenfold spatial gradient in average spike/plateau amplitude measured at the soma, from οΏ½3 mV for distal inputs to οΏ½23 mV for proximal inputs. Spike/plateaus were NMD

    Computational subunits in thin dendrites of pyramidal cells

    Get PDF
    The thin basal and oblique dendrites of cortical pyramidal neurons receive most of the cells' synaptic input, but their integrative properties remain uncertain. Previous studies have most often reported global linear or sublinear summation. An alternative view,supported by biophysical modeling studies, holds that thin dendrites provide a layer of independent computational 'subunits' that sigmoidally modulate their inputs prior to global summation. To distinguish these possibilities, we combined confocal imaging and dual-site focal synaptic stimulation of identified thin dendrites in rat neocortical pyramidal neurons. We found that nearby inputs on the same branch summed sigmoidally, whereas widely separated inputs or inputs to different branches summed linearly. This strong spatial compartmentalization effect is incompatible with a global summation rule and provides the first experimental support for a two-layer "neural network" [The quotes are left in to refer to a standard architecture in the artificial neural network field] model of pyramidal neuron thin-branch integration. Our findings could have important implications for the computing and memory-related functions of cortical tissue
    corecore