72 research outputs found

    Some Consequences of the Baryonic Dark Matter Population

    Full text link
    Microlensed double-image quasars have sent a consistent message that the baryonic dark matter consists of a population of free-roaming planet mass objects, as summarized previously. These were previously predicted to have formed at the time of recombination, 300,000 years after the Big Bang, whence they collapsed on a Kelvin Helmholz time scale. Today they are glimpsed as the cometary knots in planetary nebulae. But they probably also nucleate the mysterious Lyman-alpha clouds and cause a reduction in the transparency of the universe to distant quasars and supernovae.Comment: Report to the Edinburgh International Dark Matter 2004 Symposiu

    Interpretation of the Stephan Quintet Galaxy Cluster using Hydro-Gravitational-Dynamics: Viscosity and Fragmentation

    Full text link
    Stephan's Quintet (SQ) is a compact group of galaxies that has been well studied since its discovery in 1877 but is mysterious using cold dark matter hierarchical clustering cosmology (CDMHCC). Anomalous red shifts z=(0.0027,0.019,0.022,0.022,0.022)z = (0.0027,0.019, 0.022, 0.022, 0.022) among galaxies in SQ either reduce it to a Trio with two highly improbable intruders from CDMHCC or support the Arp (1973) hypothesis that its red shifts are intrinsic. An alternative is provided by the Gibson 1996-2006 hydro-gravitational-dynamics (HGD) theory where superclusters, clusters and galaxies all originate by gravitational fragmentation in the super-viscous plasma epoch and at planetary and star cluster mass scales in the primordial gas of the expanding universe. By this fluid-mechanical cosmology, the SQ galaxies gently separate and remain precisely along a line of sight because of perspective and the small transverse velocities permitted by their sticky viscous-gravitational beginnings. Star and gas bridges and young-globular-star-cluster (YGC) trails observed by the Hubble Space Telescope are triggered as SQ galaxies separate through viscous baryonic-dark-matter halos of dark proto-globular-cluster (PGC) clumps of frozen Earth-mass primordial-fog-particles (PFPs).Comment: 14 pages, 3 figures, see http://sdcc3.ucsd.edu/~ir118 for more informatio

    Theory and observations of galactic dark matter

    Get PDF
    Sir James Jeans's (1902 and 1929) linear, acoustic, theory of gravitational instability gives vast errors for the structure formation of the early universe. Gibson's (1996) nonlinear theory shows that nonacoustic density extrema produced by turbulence are gravitationally unstable at turbulent, viscous, or diffusive Schwarz scales L_ST, L_SV, L_SD, independent of Jeans's acoustic scale L_J. Structure formation began with decelerations of 10^46 kg protosuperclusters in the hot plasma epoch, 13,000 years after the Big Bang, when L_SV decreased to the Hubble (horizon) scale L_H equiv ct, where c is light speed and t is time, giving 10^42 kg protogalaxies just before the cooled plasma formed neutral H-He gas at 300,000 years. In 10^3 years this primordial gas condensed to 10^23 - 10^25 kg L_SV - L_ST scale objects, termed ``primordial fog particles'' (PFPs). Schild (1996) suggested from continuous microlensing of quasar Q0957 + 561 A,B that the mass of the 10^42 kg lens galaxy is dominated by 10^23 - 10^25 kg ``rogue planets ... likely to be the missing mass''. A microlensing event seen at three observatories confirms Schild's (1996) claims, and supports Gibson's (1996) prediction that PFPs comprise most of the dark matter at galactic scales.Comment: submitted to A&A, pdf file with figures, or see http://www-acs.ucsd.edu/~ir11

    Interpretation of the Tadpole VV29 Merging Galaxy System using Hydro-Gravitational Theory

    Full text link
    Hubble Space Telescope (HST/ACS) images of the galaxy merger Tadpole are interpreted using the hydro-gravitational theory of Gibson 1996-2000 (HGT) that predicts galaxy masses within about 100 kpc are dominated by dark halos of planetary mass primordial-fog-particles (PFPs) in dark proto-globular-star-clusters (PGCs). According to our interpretation, stars and young-globular-clusters (YGCs) appear out of the dark as merging galaxy components VV29cdef move through the baryonic-dark-matter halo of the larger galaxy VV29a creating luminous star-wakes. Frozen PFP planets are evaporated by radiation and tidal forces of the intruders. Friction from the gas accelerates an accretional cascade of PFPs to form larger planets, stars and YGCs of the filamentary galaxy VV29b. Star-wakes show that galaxy VV29c, identified as a blue dwarf by radio telescope observations of gas density and velocity (Briggs et al. 2001), with companions VV29def entered the dark halo of the larger VV29a galaxy at a radius 130 kpc and then spiraled in on different tracks toward frictional capture by the VV29a core. A previously dark dwarf galaxy is identified from a Keck spectrographic study showing a VV29c star-wake dense cluster of YGCs aligned to 1 degree in a close straight row (Tran et al. 2003).Comment: 16 pages, 5 figures, article for The Astronomical Journal revised according to referee comment

    Goodness in the Axis of Evil

    Full text link
    An unexpected alignment of 2-4-8-16 cosmic microwave background spherical harmonic directions with the direction of a surprisingly large WMAP temperature minimum, a large radio galaxy void, and an unexpected alignment and handedness of galaxy spins have been observed. The alignments point to RA=202 degrees, delta = 25 degrees and are termed the ``Axis of Evil''. Already many authors have commented about how the AE impacts our understanding of how structure emerged in the Universe within the framework of Lamda-CDM, warm dark matter, string theory, and hydro-gravitational dynamics (HGD). The latter uniquely predicts the size scales of the voids and matter condensations, based upon estimates of fluid forces in the early phases of structure formation. Reported departures from simple Gaussian properties of the WMAP data favor two regimes of turbulent structure formation, and from these we make predictions of the nature of finer structure expected to be measured with the PLANCK spacecraft. From HGD, friction has limited the expansion of superclusters to 30 Mpc but supervoids have expanded with the universe to 300 Mpc.Comment: 9 pages, 1 figure and 1 table, rejected by ApJ Letters not for technical reasons, but because the manuscript is too qualitative and does not rise to the level of ApJ. And the title is objectionabl

    Hydro-Gravitational-Dynamics of Planets and Dark Energy

    Full text link
    Self-gravitational fluid mechanical methods termed hydro-gravitational-dynamics (HGD) predict plasma fragmentation 0.03 Myr after the turbulent big bang to form protosuperclustervoids, turbulent protosuperclusters, and protogalaxies at the 0.3 Myr transition from plasma to gas. Linear protogalaxyclusters fragment at 0.003 Mpc viscous-inertial scales along turbulent vortex lines or in spirals, as observed. The plasma protogalaxies fragment on transition into white-hot planet-mass gas clouds (PFPs) in million-solar-mass clumps (PGCs) that become globular-star-clusters (GCs) from tidal forces or dark matter (PGCs) by freezing and diffusion into 0.3 Mpc halos with 97% of the galaxy mass. The weakly collisional non-baryonic dark matter diffuses to > Mpc scales and frag-ments to form galaxy cluster halos. Stars and larger planets form by binary mergers of the trillion PFPs per PGC on 0.03 Mpc galaxy accretion disks. Star deaths depend on rates of planet accretion and internal star mixing. Moderate accretion rates produce white dwarfs that evaporate surrounding gas planets by spin-radiation to form planetary nebulae before Supernova Ia events, dimming some events to give systematic distance errors misinterpreted as the dark energy hypothesis and overestimates of the universe age. Failures of standard LCDM cosmological models reflect not only obsolete Jeans 1902 fluid mechanical assumptions, but also failures of standard turbulence models that claim the cascade of turbulent kinetic energy is from large scales to small. Because turbulence is always driven at all scales by inertial-vortex forces the turbulence cascade is always from small scales to large.Comment: 14 pages 9 figures, to be published in Journal of Applied Fluid Mechanics 2009, 2(1), further information at http://sdcc3.ucsd.edu/~ir11

    Clumps of hydrogenous planetoids as the dark matter of galaxies

    Get PDF
    Nonlinear gravitational condensation theory and quasar-microlensing observations lead to the conclusion that the baryonic mass of most galaxies is dominated by dense clumps of hydrogenous planetoids. Star microlensing collaborations fail to detect planetoids as the dominant dark matter component of the Galaxy halo by an unjustified uniform-number-density assumption that underestimates the average value. From (Jeans's 1902) linear gravitational condensation theory, and from nonlinear theory for different reasons, proto-globular-cluster (PGC) mass gas blobs should form soon after the plasma epoch ends and neutral gas appears, about 300,000 years after the Big Bang. Such PGC blobs should then fragment into planetary-mass objects at viscous and turbulent Schwarz scales of the weakly turbulent primordial gas, from Gibson's 1996 nonlinear theory. Schild's 1996 interpretation, from measured twinkling frequencies of the lensed quasar Q0957+561 A,B (after subtraction of the phased images), was that the mass of the lens galaxy is dominated by "rogue planets >... likely to be the missing mass". Schild's findings of a 1.1 year image time delay, with dominant planetoid image-twinkling-period, are confirmed herein by three observatories.Comment: 21 pages, 3 figures, re-submitted to Ap

    Is Dark Energy Falsifiable?

    Full text link
    Is the accelerating expansion of the Universe true, inferred through observations of distant supernovae, and is the implied existence of an enormous amount of anti-gravitational dark energy material driving the accelerating expansion of the universe also true? To be physically useful these propositions must be falsifiable; that is, subject to observational tests that could render them false, and both fail when viscous, diffusive, astro-biological and turbulence effects are included in the interpretation of observations. A more plausible explanation of negative stresses producing the big bang is turbulence at Planck temperatures. Inflation results from gluon viscous stresses at the strong force transition. Anti-gravitational (dark energy) turbulence stresses are powerful but only temporary. No permanent dark energy is needed. At the plasma-gas transition, viscous stresses cause fragmentation of plasma proto-galaxies into dark matter clumps of primordial gas planets, each of which falsifies dark-energy cold-dark-matter cosmologies. Clumps of these planets form all stars, and explain the alleged accelerating expansion of the universe as a systematic dimming error of Supernovae Ia by light scattered in the hot turbulent atmospheres of evaporated planets surrounding central white dwarf stars.Comment: 13 pages, 6 figures, for Volume 7 of the Journal of Cosmolog

    Black Hole or MECO? Decided by a Thin Luminous Ring Structure Deep Within Quasar Q0957

    Full text link
    Optical, Infrared, X-ray, and radio wavelength studies of quasars are beginning to define the luminous quasar structure from techniques of reverberation and microlensing. An important result is that the inner quasar structure of the first identified gravitational lens, Q0957+561 A,B seems not to show the kind of structure expected for a supermassive black hole, but instead show a clean-swept interior region as due to the action of a magnetic propeller, just as expected for a MECO (Magnetic Eternally Collapsing Object) structure. Given the present state of the observations, the strongest model discriminant seems to be the existence of a thin luminous band around the inner edge of the accretion disc, at a distant radius ~ 70 R_g from the ~ 4 x 10^9 Mo central object. Since the existence of a clean magnetic propeller swept inner region ~70 R_g surrounded by a sharp ~ 1 R_g disc edge are the low-hard state spectral properties associated with a highly redshifted central MECO object, we are led to the conclusion that these observations imply that the Q0957 quasar contains a central supermassive MECO instead of a black hole. In this report we review the details of the observations which have compelled us to reach this conclusion.Comment: 23 Pages, 7 Figures, submitted to P.A.S.

    Discovery of Universal Elliptical Outflow Structures in Radio-Quiet Quasars

    Full text link
    Fifty-nine quasars in the background of the Magellanic Clouds had brightness records monitored by the MACHO project during the years 1992 - 99. Because the circumpolar fields of these quasars had no seasonal sampling defects, their observation produced data sets well suited to further careful analysis. Following a preliminary report wherein we showed the existence of reverberation in the data for one of the radio-quiet quasars in this group, we now show that similar reverberations have been seen in all of the 55 radio-quiet quasars with adequate data, making possible the determination of the quasar inclination to the observer's line of sight. The reverberation signatures indicate the presence of large-scale elliptical outflow structures similar to that predicted by the Elvis (2000) and "dusty torus" models of quasars, whose characteristic sizes vary within a surprisingly narrow range of scales. More importantly the observed opening angle relative to the polar axis of the universal elliptical outflow structure present was consistently found to be on the order of 78 degrees.Comment: 10 Pages, 4 figures and 1 table. Submitted to MNRA
    • …
    corecore