1,669 research outputs found
Thermodynamic Study of Excitations in a 3D Spin Liquid
In order to characterize thermal excitations in a frustrated spin liquid, we
have examined the magnetothermodynamics of a model geometrically frustrated
magnet. Our data demonstrate a crossover in the nature of the spin excitations
between the spin liquid phase and the high-temperature paramagnetic state. The
temperature dependence of both the specific heat and magnetization in the spin
liquid phase can be fit within a simple model which assumes that the spin
excitations have a gapped quadratic dispersion relation.Comment: 5 figure
Quantum Mechanics, Common Sense and the Black Hole Information Paradox
The purpose of this paper is to analyse, in the light of information theory
and with the arsenal of (elementary) quantum mechanics (EPR correlations,
copying machines, teleportation, mixing produced in sub-systems owing to a
trace operation, etc.) the scenarios available on the market to resolve the
so-called black-hole information paradox. We shall conclude that the only
plausible ones are those where either the unitary evolution of quantum
mechanics is given up, in which information leaks continuously in the course of
black-hole evaporation through non-local processes, or those in which the world
is polluted by an infinite number of meta-stable remnants.Comment: 15 pages, Latex, CERN-TH.6889/9
Flux through a hole from a shaken granular medium
We have measured the flux of grains from a hole in the bottom of a shaken
container of grains. We find that the peak velocity of the vibration, vmax,
controls the flux, i.e., the flux is nearly independent of the frequency and
acceleration amplitude for a given value of vmax. The flux decreases with
increasing peak velocity and then becomes almost constant for the largest
values of vmax. The data at low peak velocity can be quantitatively described
by a simple model, but the crossover to nearly constant flux at larger peak
velocity suggests a regime in which the granular density near the container
bottom is independent of the energy input to the system.Comment: 14 pages, 4 figures. to appear in Physical Review
Low Temperature Spin Freezing in Dy2Ti2O7 Spin Ice
We report a study of the low temperature bulk magnetic properties of the spin
ice compound Dy2Ti2O7 with particular attention to the (T < 4 K) spin freezing
transition. While this transition is superficially similar to that in a spin
glass, there are important qualitative differences from spin glass behavior:
the freezing temperature increases slightly with applied magnetic field, and
the distribution of spin relaxation times remains extremely narrow down to the
lowest temperatures. Furthermore, the characteristic spin relaxation time
increases faster than exponentially down to the lowest temperatures studied.
These results indicate that spin-freezing in spin ice materials represents a
novel form of magnetic glassiness associated with the unusual nature of
geometrical frustration in these materials.Comment: 24 pages, 8 figure
The B Neutrino Spectrum
Knowledge of the energy spectrum of B neutrinos is an important
ingredient for interpreting experiments that detect energetic neutrinos from
the Sun. The neutrino spectrum deviates from the allowed approximation because
of the broad alpha-unstable Be final state and recoil order corrections to
the beta decay. We have measured the total energy of the alpha particles
emitted following the beta decay of B. The measured spectrum is
inconsistent with some previous measurements, in particular with a recent
experiment of comparable precision. The beta decay strength function for the
transition from B to the accessible excitation energies in Be is fit to
the alpha energy spectrum using the R-matrix approach. Both the positron and
neutrino energy spectra, corrected for recoil order effects, are constructed
from the strength function. The positron spectrum is in good agreement with a
previous direct measurement. The neutrino spectrum disagrees with previous
experiments, particularly for neutrino energies above 12 MeV.Comment: 15 pages, 13 figures, 4 tables, submitted to Phys. Rev. C, typos
correcte
Recommended from our members
Dynamic neurotransmitter interactions measured with PET
Positron emission tomography (PET) has become a valuable interdisciplinary tool for understanding physiological, biochemical and pharmacological functions at a molecular level in living humans, whether in a healthy or diseased state. The utility of tracing chemical activity through the body transcends the fields of cardiology, oncology, neurology and psychiatry. In this, PET techniques span radiochemistry and radiopharmaceutical development to instrumentation, image analysis, anatomy and modeling. PET has made substantial contributions in each of these fields by providing a,venue for mapping dynamic functions of healthy and unhealthy human anatomy. As diverse as the disciplines it bridges, PET has provided insight into an equally significant variety of psychiatric disorders. Using the unique quantitative ability of PET, researchers are now better able to non-invasively characterize normally occurring neurotransmitter interactions in the brain. With the knowledge that these interactions provide the fundamental basis for brain response, many investigators have recently focused their efforts on an examination of the communication between these chemicals in both healthy volunteers and individuals suffering from diseases classically defined as neurotransmitter specific in nature. In addition, PET can measure the biochemical dynamics of acute and sustained drug abuse. Thus, PET studies of neurotransmitter interactions enable investigators to describe a multitude of specific functional interactions in the human brain. This information can then be applied to understanding side effects that occur in response to acute and chronic drug therapy, and to designing new drugs that target multiple systems as opposed to single receptor types. Knowledge derived from PET studies can be applied to drug discovery, research and development (for review, see (Fowler et al., 1999) and (Burns et al., 1999)). Here, we will cover the most substantial contributions of PET to understanding biologically distinct neurochemical systems that interact to produce a variety of behaviors and disorders. Neurotransmitters are neither static nor isolated in their distribution. In fact, it is through interactions with other neurochemically distinct systems that the central nervous system (CNS) performs its vital role in sustaining life. Exclusive quantitative capabilities intrinsic to PET make this technology a suitable experimental tool to measure not only the regional distribution of specific receptors and their subtypes, but also the dynamic properties of neuroreceptors and their inherent influence on related neurotransmitter pathways. The ability to investigate dynamic properties in a non-invasive and reproducible manner provides a powerful tool that can extend our current knowledge of these interactions. Coupled with innovative paradigms including pharmacologic manipulations, physiologic models and reconstruction theories, knowledge derived from PET studies can greatly advance our understanding of normal and abnormal brain function
Spin dynamics of a tetrahedral cluster magnet
We study the magnetism of a lattice of coupled tetrahedral spin-1/2 clusters
which might be of relevance to the tellurate compounds Cu2Te2O5X2, with X=Cl,
Br. Using the flow equation method we perform a series expansion in terms of
the inter-tetrahedral exchange couplings starting from the quadrumer limit.
Results will be given for the magnetic instabilities of the quadrumer phase and
the dispersion of elementary triplet excitations. In limiting cases of our
model of one- or two dimensional character we show our results to be consistent
with findings on previously investigated decoupled tetrahedral chains and the
Heisenberg model on the 1/5-depleted square lattice.Comment: 5 pages, 5 figures, 7 eps file
Low temperature resistivity in a nearly half-metallic ferromagnet
We consider electron transport in a nearly half-metallic ferromagnet, in
which the minority spin electrons close to the band edge at the Fermi energy
are Anderson-localized due to disorder. For the case of spin-flip scattering of
the conduction electrons due to the absorption and emission of magnons, the
Boltzmann equation is exactly soluble to the linear order. From this solution
we calculate the temperature dependence of the resistivity due to single magnon
processes at sufficiently low temperature, namely , where is
the Anderson localization length and is the magnon stiffness. And depending
on the details of the minority spin density of states at the Fermi level, we
find a or scaling behavior for resistivity. Relevance to the
doped perovskite manganite systems is discussed
Low temperature spin fluctuations in geometrically frustrated Yb3Ga5O12
In the garnet structure compound Yb3Ga5O12, the Yb3+ ions (ground state
effective spin S' = 1/2) are situated on two interpenetrating corner sharing
triangular sublattices such that frustrated magnetic interactions are possible.
Previous specific heat measurements evidenced the development of short range
magnetic correlations below 0.5K and a lambda-transition at 54mK (Filippi et
al. J. Phys. C: Solid State Physics 13 (1980) 1277). From 170-Yb M"ossbauer
spectroscopy measurements down to 36mK, we find there is no static magnetic
order at temperatures below that of the lambda-transition. Below 0.3K, the
fluctuation frequency of the short range correlated Yb3+ moments progressively
slows down and as the temperature tends to 0, the frequency tends to a
quasi-saturated value of 3 x 10^9 s^-1. We also examined the Yb3+ paramagnetic
relaxation rates up to 300K using 172-Yb perturbed angular correlation
measurements: they evidence phonon driven processes.Comment: 6 pages, 5 figure
Coherent Behavior and Nonmagnetic Impurity Effects of the Spin Disordered State in NiGaS
Nonmagnetic impurity effects of the spin disordered state in the triangular
antiferromagnet NiGaS was studied through magnetic and thermal
measurements for NiZnGaS (0.0\le x\le 0.3). Only 1 %
substitution is enough to strongly suppress the coherence observed in the spin
disordered state. However, the suppression is not complete and the robust
feature of the T^2 dependent specific heat and its scaling behavior with the
Weiss temperature indicate the existence of a coherent Nambu-Goldstone mode.
Absence of either conventional magnetic order or bulk spin freezing suggests a
novel symmetry breaking of the ground state.Comment: 4 pages, 4 figure
- …