226 research outputs found

    Damping in 2D and 3D dilute Bose gases

    Full text link
    Damping in 2D and 3D dilute gases is investigated using both the hydrodynamical approach and the Hartree-Fock-Bogoliubov (HFB) approximation . We found that the both methods are good for the Beliaev damping at zero temperature and Landau damping at very low temperature, however, at high temperature, the hydrodynamical approach overestimates the Landau damping and the HFB gives a better approximation. This result shows that the comparison of the theoretical calculation using the hydrodynamical approach and the experimental data for high temperature done by Vincent Liu (PRL {\bf21} 4056 (1997)) is not proper. For two-dimensional systems, we show that the Beliaev damping rate is proportional to k3k^3 and the Landau damping rate is proportional to T2 T^2 for low temperature and to TT for high temperature. We also show that in two dimensions the hydrodynamical approach gives the same result for zero temperature and for low temperature as HFB, but overestimates the Landau damping for high temperature.Comment: 11 pages, 4 figure

    Semigroup evolution in Wigner Weisskopf pole approximation with Markovian spectral coupling

    Full text link
    We establish the relation between the Wigner-Weisskopf theory for the description of an unstable system and the theory of coupling to an environment. According to the Wigner-Weisskopf general approach, even within the pole approximation (neglecting the background contribution) the evolution of a total system subspace is not an exact semigroup for the multi-channel decay, unless the projectors into eigesntates of the reduced evolution generator W(z)W(z) are orthogonal. In this case these projectors must be evaluated at different pole locations zαzβz_\alpha\neq z_\beta. Since the orthogonality relation does not generally hold at different values of zz, for example, when there is symmetry breaking, the semigroup evolution is a poor approximation for the multi-channel decay, even for a very weak coupling. Nevertheless, there exists a possibility not only to ensure the orthogonality of the W(z)W(z) projectors regardless the number of the poles, but also to simultaneously suppress the effect of the background contribution. This possibility arises when the theory is generalized to take into account interactions with an environment. In this case W(z)W(z), and hence its eigenvectors as well, are {\it independent} of zz, which corresponds to a structure of the coupling to the continuum spectrum associated with the Markovian limit.Comment: 9 pages, 3 figure

    Zeno dynamics yields ordinary constraints

    Get PDF
    The dynamics of a quantum system undergoing frequent measurements (quantum Zeno effect) is investigated. Using asymptotic analysis, the system is found to evolve unitarily in a proper subspace of the total Hilbert space. For spatial projections, the generator of the "Zeno dynamics" is the Hamiltonian with Dirichlet boundary conditions.Comment: 6 page

    Towards a Realistic Equation of State of Strongly Interacting Matter

    Full text link
    We consider a relativistic strongly interacting Bose gas. The interaction is manifested in the off-shellness of the equilibrium distribution. The equation of state that we obtain for such a gas has the properties of a realistic equation of state of strongly interacting matter, i.e., at low temperature it agrees with the one suggested by Shuryak for hadronic matter, while at high temperature it represents the equation of state of an ideal ultrarelativistic Stefan-Boltzmann gas, implying a phase transition to an effectively weakly interacting phase.Comment: LaTeX, figures not include

    Advanced Parental Age and the Risk of Autism Spectrum Disorder

    Get PDF
    This study evaluated independent effects of maternal and paternal age on risk of autism spectrum disorder. A case-cohort design was implemented using data from 10 US study sites participating in the Centers for Disease Control and Prevention's Autism and Developmental Disabilities Monitoring Network. The 1994 birth cohort included 253,347 study-site births with complete parental age information. Cases included 1,251 children aged 8 years with complete parental age information from the same birth cohort and identified as having an autism spectrum disorder based on Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision criteria. After adjustment for the other parent's age, birth order, maternal education, and other covariates, both maternal and paternal age were independently associated with autism (adjusted odds ratio for maternal age ≥35 vs. 25–29 years = 1.3, 95% confidence interval: 1.1, 1.6; adjusted odds ratio for paternal age ≥40 years vs. 25–29 years = 1.4, 95% confidence interval: 1.1, 1.8). Firstborn offspring of 2 older parents were 3 times more likely to develop autism than were third- or later-born offspring of mothers aged 20–34 years and fathers aged <40 years (odds ratio = 3.1, 95% confidence interval: 2.0, 4.7). The increase in autism risk with both maternal and paternal age has potential implications for public health planning and investigations of autism etiology

    Does Autism Diagnosis Age or Symptom Severity Differ Among Children According to Whether Assisted Reproductive Technology was Used to Achieve Pregnancy?

    Get PDF
    Previous studies report associations between conception with assisted reproductive technology (ART) and autism. Whether these associations reflect an ascertainment or biologic effect is undetermined. We assessed diagnosis age and initial autism symptom severity among[30,000 children with autism from a linkage study of California Department of Developmental Services records, birth records, and the National ART Surveillance System. Median diagnosis age and symptom severity levels were significantly lower for ART-conceived than non-ART- conceived children. After adjustment for differences in the socio-demographic profiles of the two groups, the diagno- sis age differentials were greatly attenuated and there were no differences in autism symptomatology. Thus, ascer- tainment issues related to SES, not ART per se, are likely the driving influence of the differences we initially observed

    Association of assisted reproductive technology (ART) treatment and parental infertility diagnosis with autism in ART-conceived children

    Get PDF
    The use of assisted reproductive technology (ART), which includes all procedures that involve handling of oocytes and sperm or embryos outside of the human body, has been increasing steadily since it was first introduced in 1978. Over 5 million children conceived with ART have been born globally (Adamson et al., 2013). About 1.5% of all infants born in the USA are conceived using ART (Sunderam et al., 2013). The effect of ART procedures on the health and development of children has been an area of special interest for researchers during the last three decades. However, studying the long-term outcomes of ART is difficult in part due to rapid technological progress in this relatively new field of medicine. Remarkable advances in embryo culture, cryopreservation of embryos and oocytes, ICSI, preimplantation genetic testing, and assisted hatching have led to the development of new treatment options. The safety—including long-term safety—of these new treatments requires careful study

    Semiquantal dynamics of fluctuations: Ostensible quantum chaos

    Full text link
    The time-dependent variational principle using generalized Gaussian trial functions yields a finite dimensional approximation to the full quantum dynamics and is used in many disciplines. It is shown how these 'semi-quantum' dynamics may be derived via the Ehrenfest theorem and recast as an extended classical gradient system with the fluctuation variables coupled to the average variables. An extended potential is constructed for a one-dimensional system. The semiquantal behavior is shown to be chaotic even though the system has regular classical behavior and the quantum behavior had been assumed regular.Comment: 9 pages, TeX, 2 figures (not attached; hard copies available immediately on request). To appear in Physical Review Letter

    Comment on "Evolution of a Quasi-Stationary State"

    Get PDF
    Approximately forty years ago it was realized that the time development of decaying systems might not be precisely exponential. Rolf Winter (Phys. Rev. {\bf 123}, 1503 (1961)) analyzed the simplest nontrivial system - a particle tunneling out of a well formed by a wall and a delta-function. He calculated the probability current just outside the well and found irregular oscillations on a short time scale followed by an exponential decrease followed by more oscillations and finally by a decrease as a power of the time. We have reanalyzed this system, concentrating on the survival probability of the particle in the well rather than the probability current, and find a different short time behavior.Comment: 8 pages, 6 figures, RevTex

    Quantum Zeno subspaces

    Full text link
    The quantum Zeno effect is recast in terms of an adiabatic theorem when the measurement is described as the dynamical coupling to another quantum system that plays the role of apparatus. A few significant examples are proposed and their practical relevance discussed. We also focus on decoherence-free subspaces.Comment: 5 pages, 1 figure, to be published in Phys. Rev. Let
    corecore