1,248 research outputs found
Source-Channel Secrecy with Causal Disclosure
Imperfect secrecy in communication systems is investigated. Instead of using
equivocation as a measure of secrecy, the distortion that an eavesdropper
incurs in producing an estimate of the source sequence is examined. The
communication system consists of a source and a broadcast (wiretap) channel,
and lossless reproduction of the source sequence at the legitimate receiver is
required. A key aspect of this model is that the eavesdropper's actions are
allowed to depend on the past behavior of the system. Achievability results are
obtained by studying the performance of source and channel coding operations
separately, and then linking them together digitally. Although the problem
addressed here has been solved when the secrecy resource is shared secret key,
it is found that substituting secret key for a wiretap channel brings new
insights and challenges: the notion of weak secrecy provides just as much
distortion at the eavesdropper as strong secrecy, and revealing public messages
freely is detrimental.Comment: Allerton 2012, 6 pages. Updated version includes acknowledgement
Large scale cosmic-ray anisotropy with KASCADE
The results of an analysis of the large scale anisotropy of cosmic rays in
the PeV range are presented. The Rayleigh formalism is applied to the right
ascension distribution of extensive air showers measured by the KASCADE
experiment.The data set contains about 10^8 extensive air showers in the energy
range from 0.7 to 6 PeV. No hints for anisotropy are visible in the right
ascension distributions in this energy range. This accounts for all showers as
well as for subsets containing showers induced by predominantly light
respectively heavy primary particles. Upper flux limits for Rayleigh amplitudes
are determined to be between 10^-3 at 0.7 PeV and 10^-2 at 6 PeV primary
energy.Comment: accepted by The Astrophysical Journa
KASCADE-Grande Limits on the Isotropic Diffuse Gamma-Ray Flux between 100 TeV and 1 EeV
KASCADE and KASCADE-Grande were multi-detector installations to measure
individual air showers of cosmic rays at ultra-high energy. Based on data sets
measured by KASCADE and KASCADE-Grande, 90% C.L. upper limits to the flux of
gamma-rays in the primary cosmic ray flux are determined in an energy range of
eV. The analysis is performed by selecting air showers
with a low muon content as expected for gamma-ray-induced showers compared to
air showers induced by energetic nuclei. The best upper limit of the fraction
of gamma-rays to the total cosmic ray flux is obtained at eV with . Translated to an absolute gamma-ray
flux this sets constraints on some fundamental astrophysical models, such as
the distance of sources for at least one of the IceCube neutrino excess models.Comment: Published in The Astrophysical Journal, Volume 848, Number 1. Posted
on: October 5, 201
Primary Proton Spectrum of Cosmic Rays measured with Single Hadrons
The flux of cosmic-ray induced single hadrons near sea level has been
measured with the large hadron calorimeter of the KASCADE experiment. The
measurement corroborates former results obtained with detectors of smaller size
if the enlarged veto of the 304 m^2 calorimeter surface is encounted for. The
program CORSIKA/QGSJET is used to compute the cosmic-ray flux above the
atmosphere. Between E_0=300 GeV and 1 PeV the primary proton spectrum can be
described with a power law parametrized as
dJ/dE_0=(0.15+-0.03)*E_0^{-2.78+-0.03} m^-2 s^-1 sr^-1 TeV^-1. In the TeV
region the proton flux compares well with the results from recent measurements
of direct experiments.Comment: 13 pages, accepted by Astrophysical Journa
- âŠ