26 research outputs found

    An Efficient Fill Estimation Algorithm for Sparse Matrices and Tensors in Blocked Formats

    Get PDF
    Tensors, linear-algebraic extensions of matrices in arbitrary dimensions, have numerous applications in computer science and computational science. Many tensors are sparse, containing more than 90% zero entries. Efficient algorithms can leverage sparsity to do less work, but the irregular locations of the nonzero entries pose challenges to performance engineers. Many tensor operations such as tensor-vector multiplications can be sped up substantially by breaking the tensor into equally sized blocks (only storing blocks which contain nonzeros) and performing operations in each block using carefully tuned code. However, selecting the best block size is computationally challenging. Previously, Vuduc et al. defined the fill of a sparse tensor to be the number of stored entries in the blocked format divided by the number of nonzero entries, and showed that the fill can be used as an effective heuristic to choose a good block size. However, they gave no accuracy bounds for their method for estimating the fill, and it is vulnerable to adversarial examples. In this paper, we present a sampling-based method for finding a (1 + epsilon)-approximation to the fill of an order N tensor for all block sizes less than B, with probability at least 1 - delta, using O(B^(2N) log(B^N / delta) / epsilon^2) samples for each block size. We introduce an efficient routine to sample for all B^N block sizes at once in O(N B^N) time. We extend our concentration bounds to a more efficient bound based on sampling without replacement, using the recent Hoeffding-Serfling inequality. We then implement our algorithm and compare our scheme to that of Vuduc, as implemented in the Optimized Sparse Kernel Interface (OSKI) library. We find that our algorithm provides faster estimates of the fill at all accuracy levels, providing evidence that this is both a theoretical and practical improvement. Our code is available under the BSD 3-clause license at https://github.com/peterahrens/FillEstimation

    Exponentially Improving the Complexity of Simulating the Weisfeiler-Lehman Test with Graph Neural Networks

    Full text link
    Recent work shows that the expressive power of Graph Neural Networks (GNNs) in distinguishing non-isomorphic graphs is exactly the same as that of the Weisfeiler-Lehman (WL) graph test. In particular, they show that the WL test can be simulated by GNNs. However, those simulations involve neural networks for the 'combine' function of size polynomial or even exponential in the number of graph nodes nn, as well as feature vectors of length linear in nn. We present an improved simulation of the WL test on GNNs with \emph{exponentially} lower complexity. In particular, the neural network implementing the combine function in each node has only a polylogarithmic number of parameters in nn, and the feature vectors exchanged by the nodes of GNN consists of only O(logn)O(\log n) bits. We also give logarithmic lower bounds for the feature vector length and the size of the neural networks, showing the (near)-optimality of our construction.Comment: 22 pages,5 figures, accepted at NeurIPS 202

    Toy Models of Superposition

    Full text link
    Neural networks often pack many unrelated concepts into a single neuron - a puzzling phenomenon known as 'polysemanticity' which makes interpretability much more challenging. This paper provides a toy model where polysemanticity can be fully understood, arising as a result of models storing additional sparse features in "superposition." We demonstrate the existence of a phase change, a surprising connection to the geometry of uniform polytopes, and evidence of a link to adversarial examples. We also discuss potential implications for mechanistic interpretability.Comment: Also available at https://transformer-circuits.pub/2022/toy_model/index.htm

    Question Decomposition Improves the Faithfulness of Model-Generated Reasoning

    Full text link
    As large language models (LLMs) perform more difficult tasks, it becomes harder to verify the correctness and safety of their behavior. One approach to help with this issue is to prompt LLMs to externalize their reasoning, e.g., by having them generate step-by-step reasoning as they answer a question (Chain-of-Thought; CoT). The reasoning may enable us to check the process that models use to perform tasks. However, this approach relies on the stated reasoning faithfully reflecting the model's actual reasoning, which is not always the case. To improve over the faithfulness of CoT reasoning, we have models generate reasoning by decomposing questions into subquestions. Decomposition-based methods achieve strong performance on question-answering tasks, sometimes approaching that of CoT while improving the faithfulness of the model's stated reasoning on several recently-proposed metrics. By forcing the model to answer simpler subquestions in separate contexts, we greatly increase the faithfulness of model-generated reasoning over CoT, while still achieving some of the performance gains of CoT. Our results show it is possible to improve the faithfulness of model-generated reasoning; continued improvements may lead to reasoning that enables us to verify the correctness and safety of LLM behavior.Comment: For few-shot examples and prompts, see https://github.com/anthropics/DecompositionFaithfulnessPape

    Towards Understanding Sycophancy in Language Models

    Full text link
    Human feedback is commonly utilized to finetune AI assistants. But human feedback may also encourage model responses that match user beliefs over truthful ones, a behaviour known as sycophancy. We investigate the prevalence of sycophancy in models whose finetuning procedure made use of human feedback, and the potential role of human preference judgments in such behavior. We first demonstrate that five state-of-the-art AI assistants consistently exhibit sycophancy across four varied free-form text-generation tasks. To understand if human preferences drive this broadly observed behavior, we analyze existing human preference data. We find that when a response matches a user's views, it is more likely to be preferred. Moreover, both humans and preference models (PMs) prefer convincingly-written sycophantic responses over correct ones a non-negligible fraction of the time. Optimizing model outputs against PMs also sometimes sacrifices truthfulness in favor of sycophancy. Overall, our results indicate that sycophancy is a general behavior of state-of-the-art AI assistants, likely driven in part by human preference judgments favoring sycophantic responses.Comment: 32 pages, 20 figure

    Language Models (Mostly) Know What They Know

    Full text link
    We study whether language models can evaluate the validity of their own claims and predict which questions they will be able to answer correctly. We first show that larger models are well-calibrated on diverse multiple choice and true/false questions when they are provided in the right format. Thus we can approach self-evaluation on open-ended sampling tasks by asking models to first propose answers, and then to evaluate the probability "P(True)" that their answers are correct. We find encouraging performance, calibration, and scaling for P(True) on a diverse array of tasks. Performance at self-evaluation further improves when we allow models to consider many of their own samples before predicting the validity of one specific possibility. Next, we investigate whether models can be trained to predict "P(IK)", the probability that "I know" the answer to a question, without reference to any particular proposed answer. Models perform well at predicting P(IK) and partially generalize across tasks, though they struggle with calibration of P(IK) on new tasks. The predicted P(IK) probabilities also increase appropriately in the presence of relevant source materials in the context, and in the presence of hints towards the solution of mathematical word problems. We hope these observations lay the groundwork for training more honest models, and for investigating how honesty generalizes to cases where models are trained on objectives other than the imitation of human writing.Comment: 23+17 pages; refs added, typos fixe

    Red Teaming Language Models to Reduce Harms: Methods, Scaling Behaviors, and Lessons Learned

    Full text link
    We describe our early efforts to red team language models in order to simultaneously discover, measure, and attempt to reduce their potentially harmful outputs. We make three main contributions. First, we investigate scaling behaviors for red teaming across 3 model sizes (2.7B, 13B, and 52B parameters) and 4 model types: a plain language model (LM); an LM prompted to be helpful, honest, and harmless; an LM with rejection sampling; and a model trained to be helpful and harmless using reinforcement learning from human feedback (RLHF). We find that the RLHF models are increasingly difficult to red team as they scale, and we find a flat trend with scale for the other model types. Second, we release our dataset of 38,961 red team attacks for others to analyze and learn from. We provide our own analysis of the data and find a variety of harmful outputs, which range from offensive language to more subtly harmful non-violent unethical outputs. Third, we exhaustively describe our instructions, processes, statistical methodologies, and uncertainty about red teaming. We hope that this transparency accelerates our ability to work together as a community in order to develop shared norms, practices, and technical standards for how to red team language models

    Specific versus General Principles for Constitutional AI

    Full text link
    Human feedback can prevent overtly harmful utterances in conversational models, but may not automatically mitigate subtle problematic behaviors such as a stated desire for self-preservation or power. Constitutional AI offers an alternative, replacing human feedback with feedback from AI models conditioned only on a list of written principles. We find this approach effectively prevents the expression of such behaviors. The success of simple principles motivates us to ask: can models learn general ethical behaviors from only a single written principle? To test this, we run experiments using a principle roughly stated as "do what's best for humanity". We find that the largest dialogue models can generalize from this short constitution, resulting in harmless assistants with no stated interest in specific motivations like power. A general principle may thus partially avoid the need for a long list of constitutions targeting potentially harmful behaviors. However, more detailed constitutions still improve fine-grained control over specific types of harms. This suggests both general and specific principles have value for steering AI safely

    Learned Interpolation for Better Streaming Quantiles with Worst Case Guarantees

    No full text
    An ε-approximate quantile sketch over a stream of n inputs approximates the rank of any query point q—that is, the number of input points less than q—up to an additive error of εn, generally with some probability of at least 1−1/ poly(n), while consuming o(n) space. While the celebrated KLL sketch of Karnin, Lang, and Liberty achieves a provably optimal quantile approximation algorithm over worst-case streams, the approximations it achieves in practice are often far from optimal. Indeed, the most commonly used technique in practice is Dunning’s t-digest, which often achieves much better approximations than KLL on real-world data but is known to have arbitrarily large errors in the worst case. We apply interpolation techniques to the streaming quantiles problem to attempt to achieve better approximations on real-world data sets than KLL while maintaining similar guarantees in the worst case.S.M

    Universal Computation and Optimal Construction in the Chemical Reaction Network-Controlled Tile Assembly Model

    No full text
    Tile-based self-assembly and chemical reaction networks provide two well-studied models of scalable DNA-based computation. Although tile self-assembly provides a powerful framework for describing Turing-universal self-assembling systems, assembly logic in tile self-assembly is localized, so that only the nearby environment can affect the process of self-assembly. We introduce a new model of tile-based self-assembly in which a well-mixed chemical reaction network interacts with self-assembling tiles to exert non-local control on the self-assembly process. Through simulation of multi-stack machines, we demonstrate that this new model is efficiently Turing-universal, even when restricted to unbounded space in only one spatial dimension. Using a natural notion of program complexity, we also show that this new model can produce many complex shapes with programs of lower complexity. Most notably, we show that arbitrary connected shapes can be produced by a program with complexity bounded by the Kolmogorov complexity of the shape, without the large scale factor that is required for the analogous result in the abstract tile assembly model. These results suggest that controlled self-assembly provides additional algorithmic power over tile-only self-assembly, and that non-local control enhances our ability to perform computation and algorithmically self-assemble structures from small input programs
    corecore