881 research outputs found
Rouse Chains with Excluded Volume Interactions: Linear Viscoelasticity
Linear viscoelastic properties for a dilute polymer solution are predicted by
modeling the solution as a suspension of non-interacting bead-spring chains.
The present model, unlike the Rouse model, can describe the solution's
rheological behavior even when the solvent quality is good, since excluded
volume effects are explicitly taken into account through a narrow Gaussian
repulsive potential between pairs of beads in a bead-spring chain. The use of
the narrow Gaussian potential, which tends to the more commonly used
delta-function repulsive potential in the limit of a width parameter "d" going
to zero, enables the performance of Brownian dynamics simulations. The
simulations results, which describe the exact behavior of the model, indicate
that for chains of arbitrary but finite length, a delta-function potential
leads to equilibrium and zero shear rate properties which are identical to the
predictions of the Rouse model. On the other hand, a non-zero value of "d"
gives rise to a prediction of swelling at equilibrium, and an increase in zero
shear rate properties relative to their Rouse model values. The use of a
delta-function potential appears to be justified in the limit of infinite chain
length. The exact simulation results are compared with those obtained with an
approximate solution which is based on the assumption that the non-equilibrium
configurational distribution function is Gaussian. The Gaussian approximation
is shown to be exact to first order in the strength of excluded volume
interaction, and is found to be accurate above a threshold value of "d", for
given values of chain length and strength of excluded volume interaction.Comment: Revised version. Long chain limit analysis has been deleted. An
improved and corrected examination of the long chain limit will appear as a
separate posting. 32 pages, 9 postscript figures, LaTe
Crystal Perfection Of HgI2 Studied By Neutron And Gamma-ray Diffraction
The crystalline perfection of wire sawn pieces of vapor grown single crystals of mercuric iodide was compared with the perfection of (00l) cleaved sections of the same crystal from which nuclear radiation detectors have been fabricated. The crystalline perfection was studied using neutron and gamma-ray diffraction rocking curves. Most of the gamma-ray data were obtained using a high intensity source of 153Sm gamma rays with a wavelength of λ = 0.12 Å. Some of the data were obtained using highly penetrating 198Au gamma rays with a shorter wavelength of λ = 0.03 Å. The neutrons had a wavelength of λ = 1.07 Å. It was found that, in terms of the mosaic spread of the crystals, the cleaved detector plates have a much lower crystalline perfection than the thicker uncleaved detector plates. At the same time, the results show that for detectors cut from the same crystal, the one with the lower spectral resolution for radiation detection will also have a lower perfection and larger width of the gamma-ray rocking curve. These results suggest consideration should be given to alternative fabrication procedures for HgI2 nuclear radiation detectors
Determination of the Michel Parameters rho, xi, and delta in tau-Lepton Decays with tau --> rho nu Tags
Using the ARGUS detector at the storage ring DORIS II, we have
measured the Michel parameters , , and for
decays in -pair events produced at
center of mass energies in the region of the resonances. Using
as spin analyzing tags, we find , , , , and . In addition, we report
the combined ARGUS results on , , and using this work
und previous measurements.Comment: 10 pages, well formatted postscript can be found at
http://pktw06.phy.tu-dresden.de/iktp/pub/desy97-194.p
Polymer transport in random flow
The dynamics of polymers in a random smooth flow is investigated in the
framework of the Hookean dumbbell model. The analytical expression of the
time-dependent probability density function of polymer elongation is derived
explicitly for a Gaussian, rapidly changing flow. When polymers are in the
coiled state the pdf reaches a stationary state characterized by power-law
tails both for small and large arguments compared to the equilibrium length.
The characteristic relaxation time is computed as a function of the Weissenberg
number. In the stretched state the pdf is unstationary and exhibits
multiscaling. Numerical simulations for the two-dimensional Navier-Stokes flow
confirm the relevance of theoretical results obtained for the delta-correlated
model.Comment: 28 pages, 6 figure
Cerebral activations related to ballistic, stepwise interrupted and gradually modulated movements in parkinson patients
Patients with Parkinson's disease (PD) experience impaired initiation and inhibition of movements such as difficulty to start/stop walking. At single-joint level this is accompanied by reduced inhibition of antagonist muscle activity. While normal basal ganglia (BG) contributions to motor control include selecting appropriate muscles by inhibiting others, it is unclear how PD-related changes in BG function cause impaired movement initiation and inhibition at single-joint level. To further elucidate these changes we studied 4 right-hand movement tasks with fMRI, by dissociating activations related to abrupt movement initiation, inhibition and gradual movement modulation. Initiation and inhibition were inferred from ballistic and stepwise interrupted movement, respectively, while smooth wrist circumduction enabled the assessment of gradually modulated movement. Task-related activations were compared between PD patients (N = 12) and healthy subjects (N = 18). In healthy subjects, movement initiation was characterized by antero-ventral striatum, substantia nigra (SN) and premotor activations while inhibition was dominated by subthalamic nucleus (STN) and pallidal activations, in line with the known role of these areas in simple movement. Gradual movement mainly involved antero-dorsal putamen and pallidum. Compared to healthy subjects, patients showed reduced striatal/SN and increased pallidal activation for initiation, whereas for inhibition STN activation was reduced and striatal-thalamo-cortical activation increased. For gradual movement patients showed reduced pallidal and increased thalamo-cortical activation. We conclude that PD-related changes during movement initiation fit the (rather static) model of alterations in direct and indirect BG pathways. Reduced STN activation and regional cortical increased activation in PD during inhibition and gradual movement modulation are better explained by a dynamic model that also takes into account enhanced responsiveness to external stimuli in this disease and the effects of hyper-fluctuating cortical inputs to the striatum and STN in particular
Hand use predicts the structure of representations in sensorimotor cortex.
Fine finger movements are controlled by the population activity of neurons in the hand area of primary motor cortex. Experiments using microstimulation and single-neuron electrophysiology suggest that this area represents coordinated multi-joint, rather than single-finger movements. However, the principle by which these representations are organized remains unclear. We analyzed activity patterns during individuated finger movements using functional magnetic resonance imaging (fMRI). Although the spatial layout of finger-specific activity patterns was variable across participants, the relative similarity between any pair of activity patterns was well preserved. This invariant organization was better explained by the correlation structure of everyday hand movements than by correlated muscle activity. This also generalized to an experiment using complex multi-finger movements. Finally, the organizational structure correlated with patterns of involuntary co-contracted finger movements for high-force presses. Together, our results suggest that hand use shapes the relative arrangement of finger-specific activity patterns in sensory-motor cortex
An interval of high salinity in ancient Gale crater lake on Mars
Precipitated minerals, including salts, are primary tracers of atmospheric conditions and water chemistry in lake basins. Ongoing in situ exploration by the Curiosity rover of Hesperian (around 3.3–3.7 Gyr old) sedimentary rocks within Gale crater on Mars has revealed clay-bearing fluvio-lacustrine deposits with sporadic occurrences of sulfate minerals, primarily as late-stage diagenetic veins and concretions. Here we report bulk enrichments, disseminated in the bedrock, of 30–50 wt% calcium sulfate intermittently over about 150 m of stratigraphy, and of 26–36 wt% hydrated magnesium sulfate within a thinner section of strata. We use geochemical analysis, primarily from the ChemCam laser-induced breakdown spectrometer, combined with results from other rover instruments, to characterize the enrichments and their lithology. The deposits are consistent with early diagenetic, pre-compaction salt precipitation from brines concentrated by evaporation, including magnesium sulfate-rich brines from extreme evaporative concentration. This saline interval represents a substantial hydrological perturbation of the lake basin, which may reflect variations in Mars’ obliquity and orbital parameters. Our findings support stepwise changes in Martian climate during the Hesperian, leading to more arid and sulfate-dominated environments as previously inferred from orbital observations
Role of cellular senescence and NOX4-mediated oxidative stress in systemic sclerosis pathogenesis.
Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by progressive fibrosis of skin and numerous internal organs and a severe fibroproliferative vasculopathy resulting frequently in severe disability and high mortality. Although the etiology of SSc is unknown and the detailed mechanisms responsible for the fibrotic process have not been fully elucidated, one important observation from a large US population study was the demonstration of a late onset of SSc with a peak incidence between 45 and 54 years of age in African-American females and between 65 and 74 years of age in white females. Although it is not appropriate to consider SSc as a disease of aging, the possibility that senescence changes in the cellular elements involved in its pathogenesis may play a role has not been thoroughly examined. The process of cellular senescence is extremely complex, and the mechanisms, molecular events, and signaling pathways involved have not been fully elucidated; however, there is strong evidence to support the concept that oxidative stress caused by the excessive generation of reactive oxygen species may be one important mechanism involved. On the other hand, numerous studies have implicated oxidative stress in SSc pathogenesis, thus, suggesting a plausible mechanism in which excessive oxidative stress induces cellular senescence and that the molecular events associated with this complex process play an important role in the fibrotic and fibroproliferative vasculopathy characteristic of SSc. Here, recent studies examining the role of cellular senescence and of oxidative stress in SSc pathogenesis will be reviewed
Age-related delay in information accrual for faces: Evidence from a parametric, single-trial EEG approach
Background: In this study, we quantified age-related changes in the time-course of face processing
by means of an innovative single-trial ERP approach. Unlike analyses used in previous studies, our
approach does not rely on peak measurements and can provide a more sensitive measure of
processing delays. Young and old adults (mean ages 22 and 70 years) performed a non-speeded
discrimination task between two faces. The phase spectrum of these faces was manipulated
parametrically to create pictures that ranged between pure noise (0% phase information) and the
undistorted signal (100% phase information), with five intermediate steps.
Results: Behavioural 75% correct thresholds were on average lower, and maximum accuracy was
higher, in younger than older observers. ERPs from each subject were entered into a single-trial
general linear regression model to identify variations in neural activity statistically associated with
changes in image structure. The earliest age-related ERP differences occurred in the time window
of the N170. Older observers had a significantly stronger N170 in response to noise, but this age
difference decreased with increasing phase information. Overall, manipulating image phase
information had a greater effect on ERPs from younger observers, which was quantified using a
hierarchical modelling approach. Importantly, visual activity was modulated by the same stimulus
parameters in younger and older subjects. The fit of the model, indexed by R2, was computed at
multiple post-stimulus time points. The time-course of the R2 function showed a significantly slower
processing in older observers starting around 120 ms after stimulus onset. This age-related delay
increased over time to reach a maximum around 190 ms, at which latency younger observers had
around 50 ms time lead over older observers.
Conclusion: Using a component-free ERP analysis that provides a precise timing of the visual
system sensitivity to image structure, the current study demonstrates that older observers
accumulate face information more slowly than younger subjects. Additionally, the N170 appears to
be less face-sensitive in older observers
- …