1,504 research outputs found

    Liquid drop in a cone - line tension effects

    Full text link
    The shape of a liquid drop placed in a cone is analyzed macroscopically. Depending on the values of the cone opening angle, the Young angle and the line tension four different interfacial configurations may be realized. The phase diagram in these variables is constructed and discussed; it contains both the first- and the second-order transition lines. In particular, the tricritical point is found and the value of the critical exponent characterizing the behaviour of the system along the line of the first-order transitions in the neighbourhood of this point is determined.Comment: 11 pages, 4 figure

    Localisation and colocalisation of KK-theory at sets of primes

    Full text link
    Given a set of prime numbers S, we localise equivariant bivariant Kasparov theory at S and compare this localisation with Kasparov theory by an exact sequence. More precisely, we define the localisation at S to be KK^G(A,B) tensored with the ring of S-integers Z[S^-1]. We study the properties of the resulting variants of Kasparov theory.Comment: 16 page

    Monte Carlo Study of an Extended 3-State Potts Model on the Triangular Lattice

    Full text link
    By introducing a chiral term into the Hamiltonian of the 3-state Potts model on a triangular lattice additional symmetries are achieved between the clockwise and anticlockwise states and the ferromagnetic state. This model is investigated using Monte Carlo methods. We investigate the full phase diagram and find evidence for a line tricritical points separating the ferromagnetic and antiferromagnetic phases.Comment: 6 pages, 10 figure

    Hodge Theory on Metric Spaces

    Get PDF
    Hodge theory is a beautiful synthesis of geometry, topology, and analysis, which has been developed in the setting of Riemannian manifolds. On the other hand, spaces of images, which are important in the mathematical foundations of vision and pattern recognition, do not fit this framework. This motivates us to develop a version of Hodge theory on metric spaces with a probability measure. We believe that this constitutes a step towards understanding the geometry of vision. The appendix by Anthony Baker provides a separable, compact metric space with infinite dimensional \alpha-scale homology.Comment: appendix by Anthony W. Baker, 48 pages, AMS-LaTeX. v2: final version, to appear in Foundations of Computational Mathematics. Minor changes and addition
    corecore