553 research outputs found

    Microwave Reflectometry Sensing System for Low-Cost in-vivo Skin Cancer Diagnostics

    Get PDF
    Skin cancer is one of the most commonly diffused cancers in the world and its incidence rates have constantly increased in recent years. At the current state of the art, there is a lack of objective, quick and non-invasive methods for diagnosing this condition; this, combined with hospital crowding, may lead to late diagnosis. Starting from these considerations, this paper addresses the implementation of a microwave reflectometry based-system that can be used as a non-invasive method for the in-vivo diagnosis and early detection of biological abnormalities, such as skin cancer. This system relies on the dielectric contrasts existing between normal and anomalous skin tissues at microwave frequencies (in a frequency range up to 3 GHz). In particular, a truncated open-ended coaxial probe was designed, manufactured and tested to sense (in combination with a miniaturized Vector Network Analyzer) the variations of skin dielectric properties in a group of volunteer patients. The specific data processing demonstrated the suitability of the system for discriminating malignant and benign lesions from healthy skin, ensuring simultaneously effectiveness, low cost, compactness, comfortability, and high sensitivity

    Phase-control of directed diffusion in a symmetric optical lattice

    Get PDF
    We demonstrate the phenomenon of directed diffusion in a symmetric periodic potential. This has been realized with cold atoms in a one-dimensional dissipative optical lattice. The stochastic process of optical pumping leads to a diffusive dynamics of the atoms through the periodic structure, while a zero-mean force which breaks the temporal symmetry of the system is applied by phase-modulating one of the lattice beams. The atoms are set into directed motion as a result of the breaking of the temporal symmetry of the system

    Feasibility of a wearable reflectometric system for sensing skin hydration

    Get PDF
    One of the major goals of Health 4.0 is to offer personalized care to patients, also through real-time, remote monitoring of their biomedical parameters. In this regard, wearable monitoring systems are crucial to deliver continuous appropriate care. For some biomedical parameters, there are a number of well established systems that offer adequate solutions for real-time, continuous patient monitoring. On the other hand, monitoring skin hydration still remains a challenging task. The continuous monitoring of this physiological parameter is extremely important in several contexts, for example for athletes, sick people, workers in hostile environments or for the elderly. State-of-the-art systems, however, exhibit some limitations, especially related with the possibility of continuous, real-time monitoring. Starting from these considerations, in this work, the feasibility of an innovative time-domain reflectometry (TDR)-based wearable, skin hydration sensing system for real-time, continuous monitoring of skin hydration level was investigated. The applicability of the proposed system was demonstrated, first, through experimental tests on reference substances, then, directly on human skin. The obtained results demonstrate the TDR technique and the proposed system holds unexplored potential for the aforementioned purposes

    In Vitro Study of the Proliferation of MG63 Cells Cultured on Five Different Titanium Surfaces

    Get PDF
    The use of dental implants for prosthetic rehabilitation in dentistry is based on the concept of osteointegration. This concept enables the clinical stability of the implants and a total absence of inflammatory tissue between the implant surface and the bone tissue. For this reason, it is essential to understand the role of the titanium surface in promoting and maintaining or not maintaining contact between the bone matrix and the surface of the titanium implant. Materials and Methods: Five types of titanium discs placed in contact with osteoblast cultures of osteosarcomas were studied. The materials had different roughness. Scanning electron microscopy (SEM) photos were taken before the in vitro culture to analyze the surfaces, and at the end of the culturing time, the different gene expressions of a broad pattern of proteins were evaluated to analyze the osteoblast response, as indicated in the scientific literature. Results: It was demonstrated that the responses of the osteoblasts were different in the five cultures in contact with the five titanium discs with different surfaces; in particular, the response in the production of some proteins was statistically significant. Discussion: The key role of titanium surfaces underlines how it is still possible to carry out increasingly accurate and targeted studies in the search for new surfaces capable of stimulating a better osteoblastic response and the long-term maintenance of osteointegration

    Capping agent effect on Pd-supported nanoparticles in the hydrogenation of furfural

    Get PDF
    The catalytic performance of a series of 1 wt % Pd/C catalysts prepared by the sol-immobilization method has been studied in the liquid-phase hydrogenation of furfural. The temperature range studied was 25\u201375 \ub0C, keeping the H2 pressure constant at 5 bar. The effect of the catalyst preparation using different capping agents containing oxygen or nitrogen groups was assessed. Polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), and poly (diallyldimethylammonium chloride) (PDDA) were chosen. The catalysts were characterized by ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The characterization data suggest that the different capping agents affected the initial activity of the catalysts by adjusting the available Pd surface sites, without producing a significant change in the Pd particle size. The different activity of the three catalysts followed the trend: PdPVA/C > PdPDDA/C > PdPVP/C. In terms of selectivity to furfuryl alcohol, the opposite trend has been observed: PdPVP/C > PdPDDA/C > PdPVA/C. The different reactivity has been ascribed to the different shielding effect of the three ligands used; they influence the adsorption of the reactant on Pd active sites

    Untangling the role of the capping agent in nanocatalysis : recent advances and perspectives

    Get PDF
    Capping agents (organic ligands, polymers, surfactants, etc.) are a basic component in the synthesis of metal nanoparticles with controlled size and well-defined shape. However, their influence on the performances of nanoparticle-based catalysts is multifaceted and controversial. Indeed, capping agent can act as a "poison", limiting the accessibility of active sites, as well as a "promoter", producing improved yields and unpredicted selectivity control. These effects can be ascribed to the creation of a metal-ligand interphase, whose unique properties are responsible for the catalytic behavior. Therefore, understanding the structure of this interphase is of prime interest for the optimization of tailored nanocatalyst design. This review provides an overview of the interfacial key features affecting the catalytic performances and details a selection of related literature examples. Furthermore, we highlight critical points necessary for the design of highly selective and active catalysts with surface and interphase control

    Synchronization of Hamiltonian motion and dissipative effects in optical lattices: Evidence for a stochastic resonance

    Full text link
    We theoretically study the influence of the noise strength on the excitation of the Brillouin propagation modes in a dissipative optical lattice. We show that the excitation has a resonant behavior for a specific amount of noise corresponding to the precise synchronization of the Hamiltonian motion on the optical potential surfaces and the dissipative effects associated with optical pumping in the lattice. This corresponds to the phenomenon of stochastic resonance. Our results are obtained by numerical simulations and correspond to the analysis of microscopic quantities (atomic spatial distributions) as well as macroscopic quantities (enhancement of spatial diffusion and pump-probe spectra). We also present a simple analytical model in excellent agreement with the simulations
    • …
    corecore