416 research outputs found
Rayleigh scattering and atomic dynamics in dissipative optical lattices
We investigate Rayleigh scattering in dissipative optical lattices. In particular, following recent proposals [S. Guibal et al., Phys. Rev. Lett. 78, 4709 (1997); C. Jurczak et al., Phys. Rev. Lett. 77, 1727 (1996)], we study whether the Rayleigh resonance originates from the diffraction on a density grating and is therefore a probe of transport of atoms in optical lattices. It turns out that this is not the case: the Rayleigh line is instead a measure of the cooling rate, while spatial diffusion contributes to the scattering spectrum with a much broader resonance
Stochastic resonance in periodic potentials: realization in a dissipative optical lattice
We have observed the phenomenon of stochastic resonance on the Brillouin
propagation modes of a dissipative optical lattice. Such a mode has been
excited by applying a moving potential modulation with phase velocity equal to
the velocity of the mode. Its amplitude has been characterized by the
center-of-mass (CM) velocity of the atomic cloud. At Brillouin resonance, we
studied the CM-velocity as a function of the optical pumping rate at a given
depth of the potential wells. We have observed a resonant dependence of the CM
velocity on the optical pumping rate, corresponding to the noise strength. This
corresponds to the experimental observation of stochastic resonance in a
periodic potential in the low-damping regime
Phase-control of directed diffusion in a symmetric optical lattice
We demonstrate the phenomenon of directed diffusion in a symmetric periodic
potential. This has been realized with cold atoms in a one-dimensional
dissipative optical lattice. The stochastic process of optical pumping leads to
a diffusive dynamics of the atoms through the periodic structure, while a
zero-mean force which breaks the temporal symmetry of the system is applied by
phase-modulating one of the lattice beams. The atoms are set into directed
motion as a result of the breaking of the temporal symmetry of the system
Microwave Reflectometry Sensing System for Low-Cost in-vivo Skin Cancer Diagnostics
Skin cancer is one of the most commonly diffused cancers in the world and its incidence rates have constantly increased in recent years. At the current state of the art, there is a lack of objective, quick and non-invasive methods for diagnosing this condition; this, combined with hospital crowding, may lead to late diagnosis. Starting from these considerations, this paper addresses the implementation of a microwave reflectometry based-system that can be used as a non-invasive method for the in-vivo diagnosis and early detection of biological abnormalities, such as skin cancer. This system relies on the dielectric contrasts existing between normal and anomalous skin tissues at microwave frequencies (in a frequency range up to 3 GHz). In particular, a truncated open-ended coaxial probe was designed, manufactured and tested to sense (in combination with a miniaturized Vector Network Analyzer) the variations of skin dielectric properties in a group of volunteer patients. The specific data processing demonstrated the suitability of the system for discriminating malignant and benign lesions from healthy skin, ensuring simultaneously effectiveness, low cost, compactness, comfortability, and high sensitivity
Temperature and spatial diffusion of atoms cooled in a 3D linlin bright optical lattice
We present a detailed experimental study of a three-dimensional linlin
bright optical lattice. Measurements of the atomic temperature and spatial
diffusion coefficients are reported for different angles between the lattice
beams, i.e. for different lattice constants. The experimental findings are
interpretated with the help of numerical simulations. In particular we show,
both experimentally and theoretically, that the temperature is independent of
the lattice constant.Comment: accepted for publication in Eur. Phys. J.
Feasibility of a wearable reflectometric system for sensing skin hydration
One of the major goals of Health 4.0 is to offer personalized care to patients, also through real-time, remote monitoring of their biomedical parameters. In this regard, wearable monitoring systems are crucial to deliver continuous appropriate care. For some biomedical parameters, there are a number of well established systems that offer adequate solutions for real-time, continuous patient monitoring. On the other hand, monitoring skin hydration still remains a challenging task. The continuous monitoring of this physiological parameter is extremely important in several contexts, for example for athletes, sick people, workers in hostile environments or for the elderly.
State-of-the-art systems, however, exhibit some limitations, especially related with the possibility of continuous, real-time monitoring. Starting from these considerations, in this work, the feasibility of an innovative time-domain reflectometry (TDR)-based wearable, skin hydration sensing system for real-time, continuous monitoring of skin hydration level was investigated. The applicability of the proposed system was demonstrated, first, through experimental tests on reference substances, then, directly on human skin. The obtained results demonstrate the TDR technique and the proposed system holds unexplored potential for the aforementioned purposes
In Vitro Study of the Proliferation of MG63 Cells Cultured on Five Different Titanium Surfaces
The use of dental implants for prosthetic rehabilitation in dentistry is based on the concept of osteointegration. This concept enables the clinical stability of the implants and a total absence of inflammatory tissue between the implant surface and the bone tissue. For this reason, it is essential to understand the role of the titanium surface in promoting and maintaining or not maintaining contact between the bone matrix and the surface of the titanium implant. Materials and Methods: Five types of titanium discs placed in contact with osteoblast cultures of osteosarcomas were studied. The materials had different roughness. Scanning electron microscopy (SEM) photos were taken before the in vitro culture to analyze the surfaces, and at the end of the culturing time, the different gene expressions of a broad pattern of proteins were evaluated to analyze the osteoblast response, as indicated in the scientific literature. Results: It was demonstrated that the responses of the osteoblasts were different in the five cultures in contact with the five titanium discs with different surfaces; in particular, the response in the production of some proteins was statistically significant. Discussion: The key role of titanium surfaces underlines how it is still possible to carry out increasingly accurate and targeted studies in the search for new surfaces capable of stimulating a better osteoblastic response and the long-term maintenance of osteointegration
Brillouin propagation modes in optical lattices: Interpretation in terms of nonconventional stochastic resonance
We report the first direct observation of Brillouin-like propagation modes in a dissipative periodic optical lattice. This has been done by observing a resonant behavior of the spatial diffusion coefficient in the direction corresponding to the propagation mode with the phase velocity of the moving intensity modulation used to excite these propagation modes. Furthermore, we show theoretically that the amplitude of the Brillouin mode is a nonmonotonic function of the strength of the noise corresponding to the optical pumping, and discuss this behavior in terms of nonconventional stochastic resonance
Synchronization of Hamiltonian motion and dissipative effects in optical lattices: Evidence for a stochastic resonance
We theoretically study the influence of the noise strength on the excitation
of the Brillouin propagation modes in a dissipative optical lattice. We show
that the excitation has a resonant behavior for a specific amount of noise
corresponding to the precise synchronization of the Hamiltonian motion on the
optical potential surfaces and the dissipative effects associated with optical
pumping in the lattice. This corresponds to the phenomenon of stochastic
resonance. Our results are obtained by numerical simulations and correspond to
the analysis of microscopic quantities (atomic spatial distributions) as well
as macroscopic quantities (enhancement of spatial diffusion and pump-probe
spectra). We also present a simple analytical model in excellent agreement with
the simulations
- …