243 research outputs found
Narcolepsy and emotional experience: a review of the literature
Narcolepsy is a chronic sleep disorder characterized by excessive daytime sleepiness, cataplexy, hypnagogic hallucinations, and sleep paralysis. This disease affects significantly the overall patient functioning, interfering with social, work, and affective life. Some symptoms of narcolepsy depend on emotional stimuli; for instance, cataplectic attacks can be triggered by emotional inputs such as laughing, joking, a pleasant surprise, and also anger. Neurophysiological and neurochemical findings suggest the involvement of
emotional brain circuits in the physiopathology of cataplexy, which seems to depending on the dysfunctional interplay between the hypothalamus and the amygdala associated with an alteration of hypocretin levels. Furthermore, behavioral studies suggest an impairment of emotions processing in narcolepsy-cataplexy (NC), like a probable coping strategy to avoid or reduce the frequency of cataplexy attacks. Consistently, NC patients seem to use coping strategies even during their sleep, avoiding unpleasant mental sleep activity through lucid dreaming. Interestingly, NC patients, even during sleep, have a different emotional experience than healthy subjects, with more vivid, bizarre, and frightening dreams. Notwithstanding this evidence, the relationship between emotion and narcolepsy is poorly investigated. This review aims to provide a synthesis of behavioral, neurophysiological, and neurochemical evidence to discuss the complex relationship between NC and emotional experience and to direct future research
Some Consequences of Noncommutative Worldsheet of Superstring
In this paper some properties of the superstring with noncommutative
worldsheet are studied. We study the noncommutativity of the spacetime,
generalization of the Poincar\'e symmetry of the superstring, the changes of
the metric, antisymmetric tensor and dilaton.Comment: 11 pages, Latex, no figure, a new action and some references have
been adde
Non-Abelian Giant Gravitons
We argue that the giant graviton configurations known from the literature
have a complementary, microscopical description in terms of multiple
gravitational waves undergoing a dielectric (or magnetic moment) effect. We
present a non-Abelian effective action for these gravitational waves with
dielectric couplings and show that stable dielectric solutions exist. These
solutions agree in the large limit with the giant graviton configurations
in the literature.Comment: 8 pages. Contribution to the proceedings of the RTN workshop in
Leuven, Belgium, September 200
Clinical and molecular practice of European thoracic pathology laboratories during the COVID-19 pandemic. The past and the near future
COVID-19; Bioseguretat; PatologiaCOVID-19; Bioseguridad; PatologíaCOVID-19; Biosafety; PathologyBackground: This study evaluated the consequences in Europe of the COVID-19 outbreak on pathology laboratories orientated toward the diagnosis of thoracic diseases.
Materials and methods: A survey was sent to 71 pathology laboratories from 21 European countries. The questionnaire requested information concerning the organization of biosafety, the clinical and molecular pathology, the biobanking, the workload, the associated research into COVID-19, and the organization of education and training during the COVID-19 crisis, from 15 March to 31 May 2020, compared with the same period in 2019.
Results: Questionnaires were returned from 53/71 (75%) laboratories from 18 European countries. The biosafety procedures were heterogeneous. The workload in clinical and molecular pathology decreased dramatically by 31% (range, 3%-55%) and 26% (range, 7%-62%), respectively. According to the professional category, between 28% and 41% of the staff members were not present in the laboratories but did teleworking. A total of 70% of the laboratories developed virtual meetings for the training of residents and junior pathologists. During the period of study, none of the staff members with confirmed COVID-19 became infected as a result of handling samples.
Conclusions: The COVID-19 pandemic has had a strong impact on most of the European pathology laboratories included in this study. Urgent implementation of several changes to the organization of most of these laboratories, notably to better harmonize biosafety procedures, was noted at the onset of the pandemic and maintained in the event of a new wave of infection occurring in Europe
Clinical and molecular practice of European thoracic pathology laboratories during the COVID-19 pandemic. The past and the near future
Background: This study evaluated the consequences in Europe of the COVID-19 outbreak on pathology laboratories orientated toward the diagnosis of thoracic diseases. Materials and methods: A survey was sent to 71 pathology laboratories from 21 European countries. The questionnaire requested information concerning the organization of biosafety, the clinical and molecular pathology, the biobanking, the workload, the associated research into COVID-19, and the organization of education and training during the COVID- 19 crisis, from 15 March to 31 May 2020, compared with the same period in 2019. Results: Questionnaires were returned from 53/71 (75%) laboratories from 18 European countries. The biosafety procedures were heterogeneous. The workload in clinical and molecular pathology decreased dramatically by 31% (range, 3%-55%) and 26% (range, 7%-62%), respectively. According to the professional category, between 28% and 41% of the staff members were not present in the laboratories but did teleworking. A total of 70% of the laboratories developed virtual meetings for the training of residents and junior pathologists. During the period of study, none of the staff members with confirmed COVID-19 became infected as a result of handling samples. Conclusions: The COVID-19 pandemic has had a strong impact on most of the European pathology laboratories included in this study. Urgent implementation of several changes to the organization of most of these laboratories, notably to better harmonize biosafety procedures, was noted at the onset of the pandemic and maintained in the event of a new wave of infection occurring in Europe
Supertubes in reduced holonomy manifolds
We show that the supertube configurations exist in all supersymmetric type
IIA backgrounds which are purely geometrical and which have, at least, one flat
direction. In other words, they exist in any spacetime of the form R^{1,1} x
M_8, with M_8 any of the usual reduced holonomy manifolds. These generalised
supertubes preserve 1/4 of the supersymmetries preserved by the choice of the
manifold M_8. We also support this picture with the construction of their
corresponding family of IIA supergravity backgrounds preserving from 1/4 to
1/32 of the total supercharges.Comment: 20 page
Conformal Symmetry and the Three Point Function for the Gravitational Axial Anomaly
This work presents a first study of a radiative calculation for the
gravitational axial anomaly in the massless Abelian Higgs model. The two loop
contribution to the anomalous correlation function of one axial current and two
energy-momentum tensors, , is computed
at an order that involves only internal matter fields. Conformal properties of
massless field theories are used in order to perform the Feynman diagram
calculations in the coordinate space representation. The two loop contribution
is found not to vanish, due to the presence of two independent tensor
structures in the anomalous correlator.Comment: 34 pages, 5 figures, RevTex, Minor changes, Final version for Phys.
Rev.
Quasinormal modes of a black hole surrounded by quintessence
Using the third-order WKB approximation, we evaluate the quasinormal
frequencies of massless scalar field perturbation around the black hole which
is surrounded by the static and spherically symmetric quintessence. Our result
shows that due to the presence of quintessence, the scalar field damps more
rapidly. Moreover, we also note that the quintessential state parameter
(the ratio of pressure to the energy density ) play an
important role for the quasinormal frequencies. As the state parameter
increases the real part increases and the absolute value of the
imaginary part decreases. This means that the scalar field decays more slowly
in the larger quintessence case.Comment: 7 pages, 3 figure
Unconstrained Hamiltonian Formulation of SU(2) Gluodynamics
SU(2) Yang-Mills field theory is considered in the framework of the
generalized Hamiltonian approach and the equivalent unconstrained system is
obtained using the method of Hamiltonian reduction. A canonical transformation
to a set of adapted coordinates is performed in terms of which the
Abelianization of the Gauss law constraints reduces to an algebraic operation
and the pure gauge degrees of freedom drop out from the Hamiltonian after
projection onto the constraint shell. For the remaining gauge invariant fields
two representations are introduced where the three fields which transform as
scalars under spatial rotations are separated from the three rotational fields.
An effective low energy nonlinear sigma model type Lagrangian is derived which
out of the six physical fields involves only one of the three scalar fields and
two rotational fields summarized in a unit vector. Its possible relation to the
effective Lagrangian proposed recently by Faddeev and Niemi is discussed.
Finally the unconstrained analog of the well-known nonnormalizable groundstate
wave functional which solves the Schr\"odinger equation with zero energy is
given and analysed in the strong coupling limit.Comment: 20 pages REVTEX, no figures; final version to appear in Phys. Rev. D;
minor changes, notations simplifie
- …