73 research outputs found

    Neurotrophins in Zebrafish Taste Buds

    Get PDF
    SIMPLE SUMMARY: Zebrafish is a powerful vertebrate model organism, whose similarities with mammals are fundamental to validate its use for experimental purposes. In this study, the authors demonstrate the presence of neurotrophic factors, namely neurotrophins, in numerous taste bud cells of this fish. The reported results suggest an essential role of these factors in taste bud function. Interestingly, the results described in this study are in accordance with those reported in some mammalian species. Therefore, despite the different anatomical characteristics of the anterior digestive tract in mammals and fish, the taste buds maintain similarities in both shape and functional mechanisms in the two classes. ABSTRACT: The neurotrophin family is composed of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), Neurotrophin 3 (NT3) and NT4. These neurotrophins regulate several crucial functions through the activation of two types of transmembrane receptors, namely p75, which binds all neurotrophins with a similar affinity, and tyrosine kinase (Trk) receptors. Neurotrophins, besides their well-known pivotal role in the development and maintenance of the nervous system, also display the ability to regulate the development of taste buds in mammals. Therefore, the aim of this study is to investigate if NGF, BDNF, NT3 and NT4 are also present in the taste buds of zebrafish (Danio rerio), a powerful vertebrate model organism. Morphological analyses carried out on adult zebrafish showed the presence of neurotrophins in taste bud cells of the oropharyngeal cavity, also suggesting that BDNF positive cells are the prevalent cell population in the posterior part of the oropharyngeal region. In conclusion, by suggesting that all tested neurotrophins are present in zebrafish sensory cells, our results lead to the assumption that taste bud cells in this fish species contain the same homologous neurotrophins reported in mammals, further confirming the high impact of the zebrafish model in translational research

    Comparison of ECMWF surface meteorology and buoy observations in the Ligurian Sea

    Get PDF
    Since numerical weather prediction (NWP) models are usually used to force ocean circulation models, it is important to investigate their skill in reproducing surface meteorological parameters in open sea conditions. Near-surface meteorological data (air temperature, relative humidity, barometric pressure, wind speed and direction) have been acquired from several sensors deployed on an offshore large spar buoy in the Ligurian Sea (Northern Mediterranean Sea) from February to December 2000. The buoy collected 7857 valid records out of 8040 during 335 days at sea. These observations have been compared with data from NWP models and specifically, the outputs of the ECMWF analysis in the two grid points closest to the buoy position. Hourly data acquired by the buoy have been undersampled to fit the data set of the model composed by values computed at the four synoptic hours. For each mentioned meteorological parameter an analysis has been performed by evaluating instantaneous synoptic differences, distributions, daily and annual variations and related statistics. The comparison shows that the model reproduces correctly the baric field while significant differences result for the other variables, which are more affected by local conditions. This suggests that the observed discrepancies may be due to the poor resolution of the model that probably is not sufficient to appropriately discriminate between land and ocean surfaces in a small basin such as the Ligurian Sea and to take into account local peculiarities. The use of time- and space-averaged model data reduces the differences with respect to the in situ observations, thus making the model data usable for analysis with minor requirements about time and space resolution. Although this comparison is strongly limited and we cannot exclude measurement errors, its results suggest a great caution in the use of the model data, especially at high frequency resolution. They may lead to incorrect estimates of atmospheric forcing into ocean circulation models, causing important errors in those areas, such as the Mediterranean Sea, where ocean circulation is strongly coupled with atmosphere and its high variability

    De novo DNA methylation induced by circulating extracellular vesicles from acute coronary syndrome patients

    Get PDF
    DNA methylation is associated with gene silencing, but its clinical role in cardiovascular diseases (CVDs) remains to be elucidated. We hypothesized that extracellular vesicles (EVs) may carry epigenetic changes, showing themselves as a potentially valuable non-invasive diagnostic liquid biopsy. We isolated and characterized circulating EVs of acute coronary syndrome (ACS) patients and assessed their role on DNA methylation in epigenetic modifications

    An Alkaloid from a Highly Invasive Seaweed Increases the Voracity and Reproductive Output of a Model Fish Species

    Get PDF
    The invasive macroalga Caulerpa cylindracea has spread widely in the Mediterranean Sea, becoming a favorite food item for native fish for reasons yet unknown. By using a combination of behavioral, morphological, and molecular approaches, herein we provide evidence that the bisindole alkaloid caulerpin, a major secondary metabolite of C. cylindracea, significantly increases food intake in the model fish Danio rerio, influencing the regulation of genes involved in the orexigenic pathway. In addition, we found that the compound improves fish reproductive performance by affecting the hypothalamus-pituitary-gonadal axis. The obtained results pave the way for the possible valorization of C. cylindracea as a sustainable source of a functional feed additive of interest to face critical challenges both in aquaculture and in human nutrition

    On the Suitability of Augmented Reality for Safe Experiments on Radioactive Materials in Physics Educational Applications

    Get PDF
    Laboratory experiences have proved to be a key moment of the educational path in most of the so-called Sciences, Technology, Engineering and Mathematics (STEM) subjects. Having the opportunity of practicing on actual experiments about the theoretical knowledge achieved during the classroom lectures is a fundamental step from a didactic point of view. However, lab activities could be forbidden in the presence of tests characterized by safety issues, thus limiting students' cultural growth; this is particularly true for physics experiments involving radioactive materials, sources of dangerous radiations. To face the considered problems, the authors propose hereinafter a mixed-reality solution involving augmented reality (AR) at students-side and actual instrumentation at laboratory-side. It is worth noting that the proposed solution can be applied for any type of experiment involving the remote control of measurement instruments and generic risk conditions (physical, chemical or biological). As for the considered case study on gamma radiation measurements, an ad-hoc AR application along with a microcontroller-based prototype allows students, located in a safe classroom, to (i) control distance and orientation of a remote actual detector with respect to different radioactive sources and (ii) retrieve and display on their smartphones the corresponding energy spectrum. The communication between classroom equipment and remote laboratory is carried out by means of enabling technologies typical of Internet of Things paradigm, thus making it possible a straightforward integration of the measurement results in cloud environment as dashboard, storage or processing

    Does compulsory vaccination limit personal freedom? Ethical issues

    Get PDF
    BackgroundDespite vaccinations are scientifically proven to be safe and effective public controversies limit their application in many countries.AimsAim of this review is to provide an overview of biological effects of vaccination and a picture of the ethical dilemmas about compulsory vaccination.Methods We conducted a review on the literature about the subject. Recent news were also included.Results Vaccines are the best weapon against many infectious diseases. The spread of false beliefs among people have led the government authorities to increase compulsory vaccination in order to embank new outbreaks of preventable infectious diseases.ConclusionEven if compulsory is quite drastic approach it could be the on only way to reach an adequate coverage and protect immunoexpressed subjects

    A Rigidity-Based Decentralized Bearing Formation Controller for Groups of Quadrotor UAVs

    Get PDF
    International audienceThis paper considers the problem of controlling a formation of quadrotor UAVs equipped with onboard cameras able to measure relative bearings in their local body frames w.r.t. neighboring UAVs. The control goal is twofold: (i) steering the agent group towards a formation defined in terms of desired bearings, and (ii) actuating the group motions in the 'null-space' of the current bearing formation. The proposed control strategy relies on an extension of the rigidity theory to the case of directed bearing frameworks in R^3 Ă— S^1. This extension allows to devise a decentralized bearing controller which, unlike most of the present literature, does not need presence of a common reference frame or of reciprocal bearing measurements for the agents. Simulation and experimental results are then presented for illustrating and validating the approach

    A Rigidity-Based Decentralized Bearing Formation Controller for Groups of Quadrotor UAVs

    No full text
    International audienceThis paper considers the problem of controlling a formation of quadrotor UAVs equipped with onboard cameras able to measure relative bearings in their local body frames w.r.t. neighboring UAVs. The control goal is twofold: (i) steering the agent group towards a formation defined in terms of desired bearings, and (ii) actuating the group motions in the 'null-space' of the current bearing formation. The proposed control strategy relies on an extension of the rigidity theory to the case of directed bearing frameworks in R^3 Ă— S^1. This extension allows to devise a decentralized bearing controller which, unlike most of the present literature, does not need presence of a common reference frame or of reciprocal bearing measurements for the agents. Simulation and experimental results are then presented for illustrating and validating the approach

    Altering sensorimotor simulation impacts early stages of facial expression processing depending on individual differences in alexithymic traits

    No full text
    Simulation models of facial expressions suggest that posterior visual areas and brain areas underpinning sensorimotor simulations might interact to improve facial expression processing. According to these models, facial mimicry, a manifestation of sensorimotor simulation, may contribute to the visual processing of facial expressions by influencing early stages. The aim of this study was to assess whether and how sensorimotor simulation influences early stages of face processing, also investigating its relationship with alexithymic traits given that previous studies have suggested that individuals with high levels of alexithymic traits (vs. individuals with low levels of alexithymic traits) tend to use sensorimotor simulation to a lesser extent. We monitored P1 and N170 ERP components of the event-related potentials (ERP) in participants performing a fine discrimination task of facial expressions and animals, as a control condition. In half of the experiment, participants could freely use their facial mimicry whereas in the other half they had their facial mimicry blocked by a gel. Our results revealed that only individuals with lower compared to high alexithymic traits showed a larger modulation of the P1 amplitude as a function of the mimicry manipulation selectively for facial expressions (but not for animals), while we did not observe any modulation of the N170. Given the null results at the behavioural level, we interpreted the P1 modulation as compensative visual processing in individuals with low levels of alexithymia under conditions of interference on the sensorimotor processing, providing a preliminary evidence in favor of sensorimotor simulation models
    • …
    corecore