13 research outputs found
Exome-wide association study to identify rare variants influencing COVID-19 outcomes : Results from the Host Genetics Initiative
Publisher Copyright: Copyright: © 2022 Butler-Laporte et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Host genetics is a key determinant of COVID-19 outcomes. Previously, the COVID-19 Host Genetics Initiative genome-wide association study used common variants to identify multiple loci associated with COVID-19 outcomes. However, variants with the largest impact on COVID-19 outcomes are expected to be rare in the population. Hence, studying rare variants may provide additional insights into disease susceptibility and pathogenesis, thereby informing therapeutics development. Here, we combined whole-exome and whole-genome sequencing from 21 cohorts across 12 countries and performed rare variant exome-wide burden analyses for COVID-19 outcomes. In an analysis of 5,085 severe disease cases and 571,737 controls, we observed that carrying a rare deleterious variant in the SARS-CoV-2 sensor toll-like receptor TLR7 (on chromosome X) was associated with a 5.3-fold increase in severe disease (95% CI: 2.75–10.05, p = 5.41x10-7). This association was consistent across sexes. These results further support TLR7 as a genetic determinant of severe disease and suggest that larger studies on rare variants influencing COVID-19 outcomes could provide additional insights.Peer reviewe
A power-based sliding window approach to evaluate the clinical impact of rare genetic variants in the nucleotide sequence or the spatial position of the folded protein
Summary: Systematic determination of novel variant pathogenicity remains a major challenge, even when there is an established association between a gene and phenotype. Here we present Power Window (PW), a sliding window technique that identifies the impactful regions of a gene using population-scale clinico-genomic datasets. By sizing analysis windows on the number of variant carriers, rather than the number of variants or nucleotides, statistical power is held constant, enabling the localization of clinical phenotypes and removal of unassociated gene regions. The windows can be built by sliding across either the nucleotide sequence of the gene (through 1D space) or the positions of the amino acids in the folded protein (through 3D space). Using a training set of 350k exomes from the UK Biobank (UKB), we developed PW models for well-established gene-disease associations and tested their accuracy in two independent cohorts (117k UKB exomes and 65k exomes sequenced at Helix in the Healthy Nevada Project, myGenetics, or In Our DNA SC studies). The significant models retained a median of 49% of the qualifying variant carriers in each gene (range 2%–98%), with quantitative traits showing a median effect size improvement of 66% compared with aggregating variants across the entire gene, and binary traits’ odds ratios improving by a median of 2.2-fold. PW showcases that electronic health record-based statistical analyses can accurately distinguish between novel coding variants in established genes that will have high phenotypic penetrance and those that will not, unlocking new potential for human genomics research, drug development, variant interpretation, and precision medicine
Combining rare and common genetic variants improves population risk stratification for breast cancer
Purpose: This study aimed to evaluate the performance of different genetic screening approaches to identify women at high risk of breast cancer in the general population. Methods: We retrospectively studied 25,591 women with available electronic health records and genetic data, participants in the Healthy Nevada Project. Results: Family history of breast cancer was ascertained on or after the record of breast cancer for 78% of women with both, indicating that this risk assessment method is not being properly utilized for early screening. Genetics offered an alternative method for risk assessment. 11.4% of women were identified as high risk based on possessing a predicted loss-of-function (pLOF) variant in BRCA1, BRCA2, or PALB2 (hazard ratio = 10.4, 95% confidence interval: 8.1-13.5) or a pLOF variant in ATM or CHEK2 (hazard ratio = 3.4, CI: 2.4-4.8) or being in the top 10% of the polygenic risk score (PRS) distribution (hazard ratio = 2.4, CI: 2.0-2.8). Moreover, women with a pLOF in ATM or CHEK2 and ranking in the top 50% of the PRS displayed a high risk (39.2% probability of breast cancer at age 70), whereas their counterparts in the bottom 50% of the PRS were not at high risk (14.4% probability at age 70). Conclusion: Our findings suggest that a combined monogenic and polygenic approach allowed a better identification of participants with high risk while minimizing false positives
Recommended from our members
Emergence and rapid transmission of SARS-CoV-2 B.1.1.7 in the United States.
The highly transmissible B.1.1.7 variant of SARS-CoV-2, first identified in the United Kingdom, has gained a foothold across the world. Using S gene target failure (SGTF) and SARS-CoV-2 genomic sequencing, we investigated the prevalence and dynamics of this variant in the United States (US), tracking it back to its early emergence. We found that, while the fraction of B.1.1.7 varied by state, the variant increased at a logistic rate with a roughly weekly doubling rate and an increased transmission of 40%-50%. We revealed several independent introductions of B.1.1.7 into the US as early as late November 2020, with community transmission spreading it to most states within months. We show that the US is on a similar trajectory as other countries where B.1.1.7 became dominant, requiring immediate and decisive action to minimize COVID-19 morbidity and mortality
Recommended from our members
Genomic epidemiology identifies emergence and rapid transmission of SARS-CoV-2 B.1.1.7 in the United States.
As of January of 2021, the highly transmissible B.1.1.7 variant of SARS-CoV-2, which was first identified in the United Kingdom (U.K.), has gained a strong foothold across the world. Because of the sudden and rapid rise of B.1.1.7, we investigated the prevalence and growth dynamics of this variant in the United States (U.S.), tracking it back to its early emergence and onward local transmission. We found that the RT-qPCR testing anomaly of S gene target failure (SGTF), first observed in the U.K., was a reliable proxy for B.1.1.7 detection. We sequenced 212 B.1.1.7 SARS-CoV-2 genomes collected from testing facilities in the U.S. from December 2020 to January 2021. We found that while the fraction of B.1.1.7 among SGTF samples varied by state, detection of the variant increased at a logistic rate similar to those observed elsewhere, with a doubling rate of a little over a week and an increased transmission rate of 35-45%. By performing time-aware Bayesian phylodynamic analyses, we revealed several independent introductions of B.1.1.7 into the U.S. as early as late November 2020, with onward community transmission enabling the variant to spread to at least 30 states as of January 2021. Our study shows that the U.S. is on a similar trajectory as other countries where B.1.1.7 rapidly became the dominant SARS-CoV-2 variant, requiring immediate and decisive action to minimize COVID-19 morbidity and mortality
Recommended from our members
Genomic epidemiology identifies emergence and rapid transmission of SARS-CoV-2 B.1.1.7 in the United States.
As of January of 2021, the highly transmissible B.1.1.7 variant of SARS-CoV-2, which was first identified in the United Kingdom (U.K.), has gained a strong foothold across the world. Because of the sudden and rapid rise of B.1.1.7, we investigated the prevalence and growth dynamics of this variant in the United States (U.S.), tracking it back to its early emergence and onward local transmission. We found that the RT-qPCR testing anomaly of S gene target failure (SGTF), first observed in the U.K., was a reliable proxy for B.1.1.7 detection. We sequenced 212 B.1.1.7 SARS-CoV-2 genomes collected from testing facilities in the U.S. from December 2020 to January 2021. We found that while the fraction of B.1.1.7 among SGTF samples varied by state, detection of the variant increased at a logistic rate similar to those observed elsewhere, with a doubling rate of a little over a week and an increased transmission rate of 35-45%. By performing time-aware Bayesian phylodynamic analyses, we revealed several independent introductions of B.1.1.7 into the U.S. as early as late November 2020, with onward community transmission enabling the variant to spread to at least 30 states as of January 2021. Our study shows that the U.S. is on a similar trajectory as other countries where B.1.1.7 rapidly became the dominant SARS-CoV-2 variant, requiring immediate and decisive action to minimize COVID-19 morbidity and mortality
Lack of association between classical HLA genes and asymptomatic SARS-CoV-2 infection
Human genetic studies of critical COVID-19 pneumonia have revealed the essential role of type I interferon-dependent innate immunity to SARS-CoV-2 infection. Conversely, an association between the HLA-B*15:01 allele and asymptomatic SARS-CoV-2 infection in unvaccinated individuals was recently reported, suggesting a contribution of pre-existing T cell-dependent adaptive immunity. We report a lack of association of classical HLA alleles, including HLA-B*15:01, with pre-omicron asymptomatic SARS-CoV-2 infection in unvaccinated participants in a prospective population-based study in the United States (191 asymptomatic vs. 945 symptomatic COVID-19 cases). Moreover, we found no such association in the international COVID Human Genetic Effort cohort (206 asymptomatic vs. 574 mild or moderate COVID-19 cases and 1,625 severe or critical COVID-19 cases). Finally, in the Human Challenge Characterisation study, the three HLA-B*15:01 individuals infected with SARS-CoV-2 developed symptoms. As with other acute primary infections studied, no classical HLA alleles favoring an asymptomatic course of SARS-CoV-2 infection were identified
Mapping the human genetic architecture of COVID-19
The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3–7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease
Wastewater sequencing reveals early cryptic SARS-CoV-2 variant transmission.
As SARS-CoV-2 continues to spread and evolve, detecting emerging variants early is critical for public health interventions. Inferring lineage prevalence by clinical testing is infeasible at scale, especially in areas with limited resources, participation, or testing and/or sequencing capacity, which can also introduce biases1-3. SARS-CoV-2 RNA concentration in wastewater successfully tracks regional infection dynamics and provides less biased abundance estimates than clinical testing4,5. Tracking virus genomic sequences in wastewater would improve community prevalence estimates and detect emerging variants. However, two factors limit wastewater-based genomic surveillance: low-quality sequence data and inability to estimate relative lineage abundance in mixed samples. Here we resolve these critical issues to perform a high-resolution, 295-day wastewater and clinical sequencing effort, in the controlled environment of a large university campus and the broader context of the surrounding county. We developed and deployed improved virus concentration protocols and deconvolution software that fully resolve multiple virus strains from wastewater. We detected emerging variants of concern up to 14 days earlier in wastewater samples, and identified multiple instances of virus spread not captured by clinical genomic surveillance. Our study provides a scalable solution for wastewater genomic surveillance that allows early detection of SARS-CoV-2 variants and identification of cryptic transmission