137 research outputs found
On Age-of-Information Aware Resource Allocation for Industrial Control-Communication-Codesign
Unter dem Ăberbegriff Industrie 4.0 wird in der industriellen Fertigung die zunehmende Digitalisierung und Vernetzung von industriellen Maschinen und Prozessen zusammengefasst. Die drahtlose, hoch-zuverlĂ€ssige, niedrig-latente Kommunikation (engl. ultra-reliable low-latency communication, URLLC) â als Bestandteil von 5G gewĂ€hrleistet höchste DienstgĂŒten, die mit industriellen drahtgebundenen Technologien vergleichbar sind und wird deshalb als Wegbereiter von Industrie 4.0 gesehen. Entgegen diesem Trend haben eine Reihe von Arbeiten im Forschungsbereich der vernetzten Regelungssysteme (engl. networked control systems, NCS) gezeigt, dass die hohen DienstgĂŒten von URLLC nicht notwendigerweise erforderlich sind, um eine hohe RegelgĂŒte zu erzielen. Das Co-Design von Kommunikation und Regelung ermöglicht eine gemeinsame Optimierung von RegelgĂŒte und Netzwerkparametern durch die Aufweichung der Grenze zwischen Netzwerk- und Applikationsschicht. Durch diese VerschrĂ€nkung wird jedoch eine fundamentale (gemeinsame) Neuentwicklung von Regelungssystemen und Kommunikationsnetzen nötig, was ein Hindernis fĂŒr die Verbreitung dieses Ansatzes darstellt. Stattdessen bedient sich diese Dissertation einem Co-Design-Ansatz, der beide DomĂ€nen weiterhin eindeutig voneinander abgrenzt, aber das Informationsalter (engl. age of information, AoI) als bedeutenden Schnittstellenparameter ausnutzt.
Diese Dissertation trĂ€gt dazu bei, die EchtzeitanwendungszuverlĂ€ssigkeit als Folge der Ăberschreitung eines vorgegebenen Informationsalterschwellenwerts zu quantifizieren und fokussiert sich dabei auf den Paketverlust als Ursache. Anhand der Beispielanwendung eines fahrerlosen Transportsystems wird gezeigt, dass die zeitlich negative Korrelation von Paketfehlern, die in heutigen Systemen keine Rolle spielt, fĂŒr Echtzeitanwendungen Ă€uĂerst vorteilhaft ist. Mit der Annahme von schnellem Schwund als dominanter Fehlerursache auf der Luftschnittstelle werden durch zeitdiskrete Markovmodelle, die fĂŒr die zwei Netzwerkarchitekturen Single-Hop und Dual-Hop prĂ€sentiert werden, Kommunikationsfehlerfolgen auf einen Applikationsfehler abgebildet. Diese Modellierung ermöglicht die analytische Ableitung von anwendungsbezogenen ZuverlĂ€ssigkeitsmetriken wie die durschnittliche Dauer bis zu einem Fehler (engl. mean time to failure). FĂŒr Single-Hop-Netze wird das neuartige Ressourcenallokationsschema State-Aware Resource Allocation (SARA) entwickelt, das auf dem Informationsalter beruht und die AnwendungszuverlĂ€ssigkeit im Vergleich zu statischer Multi-KonnektivitĂ€t um GröĂenordnungen erhöht, wĂ€hrend der Ressourcenverbrauch im Bereich von konventioneller EinzelkonnektivitĂ€t bleibt.
Diese ZuverlĂ€ssigkeit kann auch innerhalb eines Systems von Regelanwendungen, in welchem mehrere Agenten um eine begrenzte Anzahl Ressourcen konkurrieren, statistisch garantiert werden, wenn die Anzahl der verfĂŒgbaren Ressourcen pro Agent um ca. 10 % erhöht werden. FĂŒr das Dual-Hop Szenario wird darĂŒberhinaus ein Optimierungsverfahren vorgestellt, das eine benutzerdefinierte Kostenfunktion minimiert, die niedrige AnwendungszuverlĂ€ssigkeit, hohes Informationsalter und hohen durchschnittlichen Ressourcenverbrauch bestraft und so das benutzerdefinierte optimale SARA-Schema ableitet. Diese Optimierung kann offline durchgefĂŒhrt und als Look-Up-Table in der unteren Medienzugriffsschicht zukĂŒnftiger industrieller Drahtlosnetze implementiert werden.:1. Introduction 1
1.1. The Need for an Industrial Solution . . . . . . . . . . . . . . . . . . . 3
1.2. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2. Related Work 7
2.1. Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2. Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3. Codesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1. The Need for Abstraction â Age of Information . . . . . . . . 11
2.4. Dependability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3. Deriving Proper Communications Requirements 17
3.1. Fundamentals of Control Theory . . . . . . . . . . . . . . . . . . . . 18
3.1.1. Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2. Performance Requirements . . . . . . . . . . . . . . . . . . . 21
3.1.3. Packet Losses and Delay . . . . . . . . . . . . . . . . . . . . . 22
3.2. Joint Design of Control Loop with Packet Losses . . . . . . . . . . . . 23
3.2.1. Method 1: Reduced Sampling . . . . . . . . . . . . . . . . . . 23
3.2.2. Method 2: Markov Jump Linear System . . . . . . . . . . . . . 25
3.2.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3. Focus Application: The AGV Use Case . . . . . . . . . . . . . . . . . . 31
3.3.1. Control Loop Model . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2. Control Performance Requirements . . . . . . . . . . . . . . . 33
3.3.3. Joint Modeling: Applying Reduced Sampling . . . . . . . . . . 34
3.3.4. Joint Modeling: Applying MJLS . . . . . . . . . . . . . . . . . 34
3.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4. Modeling Control-Communication Failures 43
4.1. Communication Assumptions . . . . . . . . . . . . . . . . . . . . . . 43
4.1.1. Small-Scale Fading as a Cause of Failure . . . . . . . . . . . . 44
4.1.2. Connectivity Models . . . . . . . . . . . . . . . . . . . . . . . 46
4.2. Failure Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.1. Single-hop network . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.2. Dual-hop network . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3. Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.1. Mean Time to Failure . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.2. Packet Loss Ratio . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.3. Average Number of Assigned Channels . . . . . . . . . . . . . 57
4.3.4. Age of Information . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5. Single Hop â Single Agent 61
5.1. State-Aware Resource Allocation . . . . . . . . . . . . . . . . . . . . 61
5.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3. Erroneous Acknowledgments . . . . . . . . . . . . . . . . . . . . . . 67
5.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6. Single Hop â Multiple Agents 71
6.1. Failure Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.1.1. Admission Control . . . . . . . . . . . . . . . . . . . . . . . . 72
6.1.2. Transition Probabilities . . . . . . . . . . . . . . . . . . . . . . 73
6.1.3. Computational Complexity . . . . . . . . . . . . . . . . . . . 74
6.1.4. Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . 75
6.2. Illustration Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3.1. Verification through System-Level Simulation . . . . . . . . . 78
6.3.2. Applicability on the System Level . . . . . . . . . . . . . . . . 79
6.3.3. Comparison of Admission Control Schemes . . . . . . . . . . 80
6.3.4. Impact of the Packet Loss Tolerance . . . . . . . . . . . . . . . 82
6.3.5. Impact of the Number of Agents . . . . . . . . . . . . . . . . . 84
6.3.6. Age of Information . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.7. Channel Saturation Ratio . . . . . . . . . . . . . . . . . . . . 86
6.3.8. Enforcing Full Channel Saturation . . . . . . . . . . . . . . . 86
6.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7. Dual Hop â Single Agent 91
7.1. State-Aware Resource Allocation . . . . . . . . . . . . . . . . . . . . 91
7.2. Optimization Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.3.1. Extensive Simulation . . . . . . . . . . . . . . . . . . . . . . . 96
7.3.2. Non-Integer-Constrained Optimization . . . . . . . . . . . . . 98
7.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8. Conclusions and Outlook 105
8.1. Key Results and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 105
8.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A. DC Motor Model 111
Bibliography 113
Publications of the Author 127
List of Figures 129
List of Tables 131
List of Operators and Constants 133
List of Symbols 135
List of Acronyms 137
Curriculum Vitae 139In industrial manufacturing, Industry 4.0 refers to the ongoing convergence of the real and virtual worlds, enabled through intelligently interconnecting industrial machines and processes through information and communications technology. Ultrareliable low-latency communication (URLLC) is widely regarded as the enabling technology for Industry 4.0 due to its ability to fulfill highest quality-of-service (QoS) comparable to those of industrial wireline connections. In contrast to this trend, a range of works in the research domain of networked control systems have shown that URLLCâs supreme QoS is not necessarily required to achieve high quality-ofcontrol; the co-design of control and communication enables to jointly optimize and balance both quality-of-control parameters and network parameters through blurring the boundary between application and network layer. However, through the tight interlacing, this approach requires a fundamental (joint) redesign of both control systems and communication networks and may therefore not lead to short-term widespread adoption. Therefore, this thesis instead embraces a novel co-design approach which keeps both domains distinct but leverages the combination of control and communications by yet exploiting the age of information (AoI) as a valuable interface metric.
This thesis contributes to quantifying application dependability as a consequence of exceeding a given peak AoI with the particular focus on packet losses. The beneficial influence of negative temporal packet loss correlation on control performance is demonstrated by means of the automated guided vehicle use case. Assuming small-scale fading as the dominant cause of communication failure, a series of communication failures are mapped to an application failure through discrete-time Markov models for single-hop (e.g, only uplink or downlink) and dual-hop (e.g., subsequent uplink and downlink) architectures. This enables the derivation of application-related dependability metrics such as the mean time to failure in closed form. For single-hop networks, an AoI-aware resource allocation strategy termed state-aware resource allocation (SARA) is proposed that increases the application reliability by orders of magnitude compared to static multi-connectivity while keeping the resource consumption in the range of best-effort single-connectivity. This dependability can also be statistically guaranteed on a system level â where multiple agents compete for a limited number of resources â if the provided amount of resources per agent is increased by approximately 10 %. For the dual-hop scenario, an AoI-aware resource allocation optimization is developed that minimizes a user-defined penalty function that punishes low application reliability, high AoI, and high average resource consumption. This optimization may be carried out offline and each resulting optimal SARA scheme may be implemented as a look-up table in the lower medium access control layer of future wireless industrial networks.:1. Introduction 1
1.1. The Need for an Industrial Solution . . . . . . . . . . . . . . . . . . . 3
1.2. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2. Related Work 7
2.1. Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2. Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3. Codesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1. The Need for Abstraction â Age of Information . . . . . . . . 11
2.4. Dependability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3. Deriving Proper Communications Requirements 17
3.1. Fundamentals of Control Theory . . . . . . . . . . . . . . . . . . . . 18
3.1.1. Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2. Performance Requirements . . . . . . . . . . . . . . . . . . . 21
3.1.3. Packet Losses and Delay . . . . . . . . . . . . . . . . . . . . . 22
3.2. Joint Design of Control Loop with Packet Losses . . . . . . . . . . . . 23
3.2.1. Method 1: Reduced Sampling . . . . . . . . . . . . . . . . . . 23
3.2.2. Method 2: Markov Jump Linear System . . . . . . . . . . . . . 25
3.2.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3. Focus Application: The AGV Use Case . . . . . . . . . . . . . . . . . . 31
3.3.1. Control Loop Model . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2. Control Performance Requirements . . . . . . . . . . . . . . . 33
3.3.3. Joint Modeling: Applying Reduced Sampling . . . . . . . . . . 34
3.3.4. Joint Modeling: Applying MJLS . . . . . . . . . . . . . . . . . 34
3.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4. Modeling Control-Communication Failures 43
4.1. Communication Assumptions . . . . . . . . . . . . . . . . . . . . . . 43
4.1.1. Small-Scale Fading as a Cause of Failure . . . . . . . . . . . . 44
4.1.2. Connectivity Models . . . . . . . . . . . . . . . . . . . . . . . 46
4.2. Failure Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.1. Single-hop network . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.2. Dual-hop network . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3. Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.1. Mean Time to Failure . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.2. Packet Loss Ratio . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.3. Average Number of Assigned Channels . . . . . . . . . . . . . 57
4.3.4. Age of Information . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5. Single Hop â Single Agent 61
5.1. State-Aware Resource Allocation . . . . . . . . . . . . . . . . . . . . 61
5.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3. Erroneous Acknowledgments . . . . . . . . . . . . . . . . . . . . . . 67
5.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6. Single Hop â Multiple Agents 71
6.1. Failure Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.1.1. Admission Control . . . . . . . . . . . . . . . . . . . . . . . . 72
6.1.2. Transition Probabilities . . . . . . . . . . . . . . . . . . . . . . 73
6.1.3. Computational Complexity . . . . . . . . . . . . . . . . . . . 74
6.1.4. Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . 75
6.2. Illustration Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3.1. Verification through System-Level Simulation . . . . . . . . . 78
6.3.2. Applicability on the System Level . . . . . . . . . . . . . . . . 79
6.3.3. Comparison of Admission Control Schemes . . . . . . . . . . 80
6.3.4. Impact of the Packet Loss Tolerance . . . . . . . . . . . . . . . 82
6.3.5. Impact of the Number of Agents . . . . . . . . . . . . . . . . . 84
6.3.6. Age of Information . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.7. Channel Saturation Ratio . . . . . . . . . . . . . . . . . . . . 86
6.3.8. Enforcing Full Channel Saturation . . . . . . . . . . . . . . . 86
6.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7. Dual Hop â Single Agent 91
7.1. State-Aware Resource Allocation . . . . . . . . . . . . . . . . . . . . 91
7.2. Optimization Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.3.1. Extensive Simulation . . . . . . . . . . . . . . . . . . . . . . . 96
7.3.2. Non-Integer-Constrained Optimization . . . . . . . . . . . . . 98
7.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8. Conclusions and Outlook 105
8.1. Key Results and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 105
8.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A. DC Motor Model 111
Bibliography 113
Publications of the Author 127
List of Figures 129
List of Tables 131
List of Operators and Constants 133
List of Symbols 135
List of Acronyms 137
Curriculum Vitae 13
Single scattering by realistic, inhomogeneous mineral dust particles with stereogrammetric shapes
Light scattering by single, inhomogeneous mineral dust particles was
simulated based on shapes and compositions derived directly from measurements
of real dust particles instead of using a mathematical shape model. We
demonstrate the use of the stereogrammetric shape retrieval method in the context
of single-scattering modelling of mineral dust for four different dust types
â all of them inhomogeneous â ranging from compact, equidimensional shapes
to very elongated and aggregate shapes. The three-dimensional particle shapes
were derived from stereo pairs of scanning-electron microscope images, and
inhomogeneous composition was determined by mineralogical interpretation of
localized elemental information based on energy-dispersive spectroscopy.
Scattering computations were performed for particles of equal-volume
diameters, from 0.08 ÎŒm up to 2.8 ÎŒm at 550 nm wavelength, using the
discrete-dipole approximation. Particle-to-particle variation in scattering
by mineral dust was found to be quite considerable and was not well
reproduced by simplified shapes of homogeneous spheres, spheroids, or
Gaussian random spheres. Effective-medium approximation results revealed that
particle inhomogeneity should be accounted for even for small amounts of
absorbing media (here up to 2% of the volume), especially when considering
scattering by inhomogeneous particles at size parameters 3<<i>x</i><8. When
integrated over a log-normal size distribution, the linear depolarization
ratio and single-scattering albedo were also found to be sensitive to
inhomogeneity. The methodology applied is work-intensive and the
light-scattering method used quite limited in terms of size parameter
coverage. It would therefore be desirable to find a sufficiently accurate but
simpler approach with fewer limitations for single-scattering modelling of
dust. For validation of such a method, the approach presented here could be
used for producing reference data when applied to a suitable set of target
particles
AVENUE21. Connected and Automated Driving: Prospects for Urban Europe
This open access publication examines the impact of connected and automated vehicles on the European city and the conditions that can enable this technology to make a positive contribution to urban development. The authors argue for two theses that have thus far received little attention in scientific discourse: as connected and automated vehicles will not be ready for use in all parts of the city for a long time, previously assumed effects â from traffic safety to traffic performance as well as spatial effects â will need to be re-evaluated. To ensure this technology has a positive impact on the mobility of the future, transport and settlement policy regulations must be adapted and further developed. Established territorial, institutional and organizational boundaries must be investigated and challenged quickly. Despite â or, indeed, because of â the many uncertainties, we find ourselves at the beginning of a new design phase, not only in terms of technology development, but also regarding politics, urban planning, administration and civil society
Recommended from our members
Ground-based off-line aerosol measurements at Praia, Cape Verde, during the Saharan Mineral Dust Experiment: Microphysical properties and mineralogy
A large field experiment of the Saharan Mineral Dust Experiment (SAMUM) was performed in Praia, Cape Verde, in
January and February 2008. This work reports on the aerosol mass concentrations, size distributions and mineralogical
composition of the aerosol arriving at Praia. Three dust periods were recorded during the measurements, divided by
transitional periods and embedded in maritime-influenced situations. The total suspended particle mass/PM10/PM2.5
were 250/180/74ÎŒg/m3 on average for the first dust period (17â21 January) and 250/230/83ÎŒg/m3 for the second (24â26
January). The third period (28 January to 2 February) was the most intensive with 410/340/130 ÎŒg/m3. Four modes were
identified in the size distribution. The first mode (50â70 nm) and partly the second (700â1100 nm) can be regarded as
of marine origin, but some dust contributes to the latter. The third mode (2â4 ÎŒm) is dominated by advected dust, while
the intermittently occurring fourth mode (15â70 ÎŒm) may have a local contribution. The dust consisted of kaolinite
(dust/maritime period: 35%wt./25%wt.),K-feldspar (20%wt./25%wt.), illite (14%wt./10%wt.), quartz (11%wt./8%wt.),
smectites (6%wt./4%wt.), plagioclase (6%wt./1%wt.), gypsum (4%wt./7%wt.), halite (2%wt./17%wt.) and calcite
(2%wt./3%wt.)
ERP hoch 3: Energieraumplanung entlang von ĂV-Achsen
Im Rahmen des national geförderten Forschungsprojekt âERP_hoch3â wird der Themenschwerpunkt Energieraumplanung in drei Fokusebenen betrachtet, untersucht und simuliert. WĂ€hrend âERPâ fĂŒr Energieraum-planung steht, steht die â3â fĂŒr drei verschiedene RaumbezĂŒge â Stadtquartiere, öffentliche Verkehrsachsen und interkommunale FlĂ€chenpotenziale erneuerbarer Energien (Region).
ERP_hoch3 ist ein zweijĂ€hriges Grundlagenforschungsprojekt, gefördert vom österreichischen Klimafonds. Das Forschungsteam besteht aus 14 Expertinnen und Experten der Fachbereiche fĂŒr Regionalplanung und fĂŒr örtliche Raumplanung (TU Wien, Department fĂŒr Raumplanung) und der Institute fĂŒr StĂ€dtebau und Prozess- und Partikeltechnik (TU Graz)
The impact of hydrothermal alteration on the physiochemical characteristics of reservoir rocks: the case of the Los Humeros geothermal field (Mexico)
Hydrothermal alteration is a common process in active geothermal systems and can significantly change the physiochemical properties of rocks. To improve reservoir assessment and modeling of high-temperature geothermal resources linked to active volcanic settings, a detailed understanding of the reservoir is needed. The Los Humeros Volcanic Complex, hosting the third largest exploited geothermal field in Mexico, represents a natural laboratory to investigate the impact of hydrothermal processes on the rock properties through andesitic reservoir cores and outcropping analogs. Complementary petrographic and chemical analyses were used to characterize the intensities and facies of hydrothermal alteration. The alteration varies from argillic and propylitic facies characterized by no significant changes of the REE budget indicating an inert behavior to silicic facies and skarn instead showing highly variable REE contents. Unaltered outcrop samples predominantly feature low matrix permeabilities (â1.67Â WÂ mâ1Â Kâ1;â>â0.91Â 10â6Â m2Â sâ1), but a significant loss of magnetic susceptibility (10â3â10â6 SI). In particular, this latter characteristic appears to be a suitable indicator during geophysical survey for the identification of hydrothermalized domains and possible pathways for fluids. The lack of clear trends between alteration facies, alteration intensity, and chemical indices in the studied samples is interpreted as the response to multiple and/or repeated hydrothermal events. Finally, the proposed integrated field-based approach shows the capability to unravel the complexity of geothermal reservoir rocks in active volcanic settings
Architecture landscape
The network architecture evolution journey will carry on in the years ahead, driving a large scale adoption of 5th Generation (5G) and 5G-Advanced use cases with significantly decreased deployment and operational costs, and enabling new and innovative use-case-driven solutions towards 6th Generation (6G) with higher economic and societal values. The goal of this chapter, thus, is to present the envisioned societal impact, use cases and the End-to-End (E2E) 6G architecture. The E2E 6G architecture includes summarization of the various technical enablers as well as the system and functional views of the architecture
Iron oxide minerals in dust-source sediments from the Bodélé Depression, Chad: Implications for radiative properties and Fe bioavailability of dust plumes from the Sahara
Atmospheric mineral dust can influence climate and biogeochemical cycles. An important component of mineral dust is ferric oxide minerals (hematite and goethite) which have been shown to influence strongly the optical properties of dust plumes and thus affect the radiative forcing of global dust. Here we report on the iron mineralogy of dust-source samples from the BodĂ©lĂ© Depression (Chad, north-central Africa), which is estimated to be Earthâs most prolific dust producer and may be a key contributor to the global radiative budget of the atmosphere as well as to long-range nutrient transport to the Amazon Basin. By using a combination of magnetic property measurements, Mössbauer spectroscopy, reflectance spectroscopy, chemical analysis, and scanning electron microscopy, we document the abundance and relative amounts of goethite, hematite, and magnetite in dust-source samples from the BodĂ©lĂ© Depression. The partition between hematite and goethite is important to know to improve models for the radiative effects of ferric oxide minerals in mineral dust aerosols. The combination of methods shows (1) the dominance of goethite over hematite in the source sediments, (2) the abundance and occurrences of their nanosize components, and (3) the ubiquity of magnetite, albeit in small amounts. Dominant goethite and subordinate hematite together compose about 2% of yellow-reddish dust-source sediments from the BodĂ©lĂ© Depression and contribute strongly to diminution of reflectance in bulk samples. These observations imply that dust plumes from the BodĂ©lĂ© Depression that are derived from goethite-dominated sediments strongly absorb solar radiation. The presence of ubiquitous magnetite (0.002-0.57 wt. %) is also noteworthy for its potentially higher solubility relative to ferric oxide and for its small sizes, including PM<0.1m. For all examined samples, the average iron apportionment is estimated at about 33% in ferric oxide minerals, 1.4 % in magnetite, and 65% in ferric silicates. Structural iron in clay minerals may account for much of the iron in the ferric silicates. We estimate that the mean ferric oxides flux exported from the BodĂ©lĂ© Depression is 0.9 Tg/yr with greater than 50% exported as ferric oxide nanoparticles (<0.1m). The high surface-to-volume ratios of ferric oxide nanoparticles once entrained into dust plumes may facilitate increased atmospheric chemical and physical processing and affect iron solubility and bioavailability to marine and terrestrial ecosystems
- âŠ