7 research outputs found

    Bluetooth low energy for autonomous human-robot interaction

    Get PDF
    © 2017 Copyright held by the owner/author(s).This demonstration shows how inexpensive, off-the-shelf, and unobtrusive Bluetooth Low Energy (BLE) devices can be utilized for enabling robots to recognize touch gestures, to perceive proximity information, and to distinguish between interacting individuals autonomously. The received signal strength (RSS) between the BLE device attached to the robot and BLE devices attached to the interacting individuals is used to achieve this. Almost no software configuration is needed and the setup can be applied to most everyday environments and robot platforms

    Autonomous and Intrinsically Motivated Robots for Sustained Human-Robot Interaction

    Get PDF
    A challenge in using fully autonomous robots in human-robot interaction (HRI) is to design behavior that is engaging enough to encourage voluntary, long-term interaction, yet robust to the perturbations induced by human interaction. It has been repeatedly argued that intrinsic motivations (IMs) are crucial for human development, so it seems reasonable that this mechanism could produce an adaptive and developing robot, which is interesting to interact with. This thesis evaluates whether an intrinsically motivated robot can lead to sustained HRI. Recent research showed that robots which ‘appeared’ intrinsically motivated raised interest in the human interaction partner. The displayed IMs resulted from ‘unpredictably’ asking a question or from a self-disclosing statement. They were designed with the help of pre-defined scripts or teleoperation. An issue here is that this practice renders the behavior less robust toward unexpected input or requires a trained human in the loop. Instead, this thesis proposes a computational model of IM to realize fully autonomous and adaptive behavior generation in a robot. Previous work showed that predictive information maximization leads to playful, exploratory behavior in simulated robots that is robust to changes in the robot’s morphology and environment. This thesis demonstrates how to deploy the formalism on a physical robot that interacts with humans. The thesis conducted three within-subjects studies, where participants interacted with a fully autonomous Sphero BB8 robot with two behavioral regimes: one realizing an adaptive, intrinsically motivated behavior and the other being reactive, but not adaptive. The first study contributes to the idea of the overall proposed study design: the interaction needs to be designed in such a way, that participants are not given any idea of the robot’s task. The second study implements this idea, letting participants focus on answering the question of whether the robots are any different. It further contributes ideas for a more ‘challenging’ baseline behavior motivating the third and final study. Here, a systematic baseline is generated and shows that participants perceive it as almost indistinguishable and similarly animated compared to the intrinsically motivated robot. Despite the emphasis on the design of similarly perceived baseline behaviors, quantitative analyses of post-interaction questionnaires after each study showed a significantly higher perception of the dimension ‘Warmth’ for the intrinsically motivated robot compared to the baseline behavior. Warmth is considered a primary dimension for social attitude formation in social cognition. A human perceived as warm (i.e. friendly and trustworthy) experiences more positive social interactions. The Robotic Social Attribute Scale (RoSAS) implements the scale dimension Warmth for the HRI domain, which has been validated with a series of still images. Going beyond static images, this thesis provides support for the use and applicability of this scale dimension for the purpose of comparing behaviors. It shows that participants prefer to continue interacting with the robot they perceive highest in Warmth. This research opens new research avenues, in particular with respect to different physical robots and longitudinal studies, which are ought to be performed to corroborate the results presented here. However, this thesis shows the general methods presented here, which do not require a human operator in the loop, can be used to imbue robots with behavior leading to positive perception by their human interaction partners, which can yield sustained HRI

    Intrinsically Motivated Autonomy in Human-Robot Interaction: Human Perception of Predictive Information in Robots

    Get PDF
    © Springer Nature Switzerland AG 2019In this paper we present a fully autonomous and intrinsically motivated robot usable for HRI experiments. We argue that an intrinsically motivated approach based on the Predictive Information formalism, like the one presented here, could provide us with a pathway towards autonomous robot behaviour generation, that is capable of producing behaviour interesting enough for sustaining the interaction with humans and without the need for a human operator in the loop. We present a possible reactive baseline behaviour for comparison for future research. Participants perceive the baseline and the adaptive, intrinsically motivated behaviour differently. In our exploratory study we see evidence that participants perceive an intrinsically motivated robot as less intelligent than the reactive baseline behaviour. We argue that is mostly due to the high adaptation rate chosen and the design of the environment. However, we also see that the adaptive robot is perceived as more warm, a factor which carries more weight in interpersonal interaction than competence

    Warmth and Competence to Predict Human Preference of Robot Behavior in Physical Human-Robot Interaction

    Get PDF
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.A solid methodology to understand human perception and preferences in human-robot interaction (HRI) is crucial in designing real-world HRI. Social cognition posits that the dimensions Warmth and Competence are central and universal dimensions characterizing other humans. The Robotic Social Attribute Scale (RoSAS) proposes items for those dimensions suitable for HRI and validated them in a visual observation study. In this paper we complement the validation by showing the usability of these dimensions in a behavior based, physical HRI study with a fully autonomous robot. We compare the findings with the popular Godspeed dimensions Animacy, Anthropomorphism, Likeability, Perceived Intelligence and Perceived Safety. We found that Warmth and Competence, among all RoSAS and Godspeed dimensions, are the most important predictors for human preferences between different robot behaviors. This predictive power holds even when there is no clear consensus preference or significant factor difference between conditions

    Utilizing Bluetooth Low Energy to recognize proximity, touch and humans

    No full text
    Interacting with humans is one of the main challenges for mobile robots in a human inhabited environment. To enable adaptive behavior, a robot needs to recognize touch gestures and/or the proximity to interacting individuals. Moreover, a robot interacting with two or more humans usually needs to distinguish between them. However, this remains both a configuration and cost intensive task. In this paper we utilize inexpensive Bluetooth Low Energy (BLE) devices and propose an easy and configurable technique to enhance the robot's capabilities to interact with surrounding people. In a noisy laboratory setting, a mobile spherical robot is utilized in three proof-of-concept experiments of the proposed system architecture. Firstly, we enhance the robot with proximity information about the individuals in the surrounding environment. Secondly, we exploit BLE to utilize it as a touch sensor. And lastly, we use BLE to distinguish between interacting individuals. Results show that observing the raw received signal strength (RSS) between BLE devices already enhances the robot's interaction capabilities and that the provided infrastructure can be facilitated to enable adaptive behavior in the future. We show one and the same sensor system can be used to detect different types of information relevant in human-robot interaction (HRI) experiments
    corecore