89 research outputs found

    Testing General Relativity with the Radio Science Experiment of the BepiColombo mission to Mercury

    Get PDF
    The relativity experiment is part of the Mercury Orbiter Radio science Experiment (MORE) on-board the ESA/JAXA BepiColombo mission to Mercury. Thanks to very precise radio tracking from the Earth and accelerometer, it will be possible to perform an accurate test of General Relativity, by constraining a number of post-Newtonian and related parameters with an unprecedented level of accuracy. The Celestial Mechanics Group of the University of Pisa developed a new dedicated software, ORBIT14, to perform the simulations and to determine simultaneously all the parameters of interest within a global least squares fit. After highlighting some critical issues, we report on the results of a full set of simulations, carried out in the most up-to-date mission scenario. For each parameter we discuss the achievable accuracy, in terms of a formal analysis through the covariance matrix and, furthermore, by the introduction of an alternative, more representative, estimation of the errors. We show that, for example, an accuracy of some parts in 10−6 for the Eddington parameter β and of 10−5 for the Nordtvedt parameter η can be attained, while accuracies at the level of 5 × 10−7 and 1 × 10−7 can be achieved for the preferred frames parameters α1 and α2, respectively

    Constraining the Nordtvedt parameter with the BepiColombo Radioscience experiment

    Get PDF
    BepiColombo is a joint ESA/JAXA mission to Mercury with challenging objectives regarding geophysics, geodesy and fundamental physics. The Mercury Orbiter Radioscience Experiment (MORE) is one of the on-board experiments, including three different but linked experiments: gravimetry, rotation and relativity. The aim of the relativity experiment is the measurement of the post-Newtonian parameters. Thanks to accurate tracking between Earth and spacecraft, the results are expected to be very precise. However, the outcomes of the experiment strictly depends on our "knowledge" about solar system: ephemerides, number of bodies (planets, satellites and asteroids) and their masses. In this paper we describe a semi-analytic model used to perform a covariance analysis to quantify the effects, on the relativity experiment, due to the uncertainties of solar system bodies parameters. In particular, our attention is focused on the Nordtvedt parameter η\eta used to parametrize the strong equivalence principle violation. After our analysis we estimated σ[η]⪅4.5×10−5\sigma[\eta]\lessapprox 4.5\times 10^{-5} which is about 1~order of magnitude larger than the "ideal" case where masses of planets and asteroids have no errors. The current value, obtained from ground based experiments and lunar laser ranging measurements, is σ[η]≈4.4×10−4\sigma[\eta]\approx 4.4\times 10^{-4}. Therefore, we conclude that, even in presence of uncertainties on solar system parameters, the measurement of η\eta by MORE can improve the current precision of about 1~order of magnitude

    Addressing some critical aspects of the BepiColombo MORE relativity experiment

    Full text link
    The Mercury Orbiter radio Science Experiment (MORE) is one of the experiments on-board the ESA/JAXA BepiColombo mission to Mercury, to be launched in October 2018. Thanks to full on-board and on-ground instrumentation performing very precise tracking from the Earth, MORE will have the chance to determine with very high accuracy the Mercury-centric orbit of the spacecraft and the heliocentric orbit of Mercury. This will allow to undertake an accurate test of relativistic theories of gravitation (relativity experiment), which consists in improving the knowledge of some post-Newtonian and related parameters, whose value is predicted by General Relativity. This paper focuses on two critical aspects of the BepiColombo relativity experiment. First of all, we address the delicate issue of determining the orbits of Mercury and the Earth-Moon barycenter at the level of accuracy required by the purposes of the experiment and we discuss a strategy to cure the rank deficiencies that appear in the problem. Secondly, we introduce and discuss the role of the solar Lense-Thirring effect in the Mercury orbit determination problem and in the relativistic parameters estimation.Comment: 29 pages, 5 figures. Presented at the Seventh International Meeting on Celestial Mechanics, San Martino al Cimino (Viterbo, Italy), 3-9 September 201

    Nested modalities in astrophysical modeling

    Get PDF
    In the context of astrophysical modeling at the solar system scale, we investigate the modalities implied by taking into account different levels of detail at which phenomena can be considered. In particular, by framing the analysis in terms of the how-possibly/how-actually distinction, we address the debated question as to whether the degree of plausibility is tightly linked to the degree of detail. On the grounds of concrete examples, we argue that, also in the astrophysical context examined, this is not necessarily the case

    A test of gravitational theories including torsion with the BepiColombo radio science experiment

    Get PDF
    The Mercury Orbiter radio Science Experiment (MORE) is one of the experiments on-board the ESA/JAXA BepiColombo mission to Mercury, to be launched in October 2018. Thanks to full on-board and on-ground instrumentation performing very precise tracking from the Earth, MORE will have the chance to determine with very high accuracy the Mercury-centric orbit of the spacecraft and the heliocentric orbit of Mercury. This will allow to undertake an accurate test of relativistic theories of gravitation (relativity experiment), which consists in improving the knowledge of some post-Newtonian and related parameters, whose value is predicted by General Relativity. This paper focuses on two critical aspects of the BepiColombo relativity experiment. First of all, we address the delicate issue of determining the orbits of Mercury and the Earth-Moon barycenter at the level of accuracy required by the purposes of the experiment and we discuss a strategy to cure the rank deficiencies that appear in the problem. Secondly, we introduce and discuss the role of the solar Lense-Thirring effect in the Mercury orbit determination problem and in the relativistic parameters estimation
    • …
    corecore