15 research outputs found

    miRNA92a targets KLF2 and the phosphatase PTEN signaling to promote human T follicular helper precursors in T1D islet autoimmunity.

    Get PDF
    Aberrant immune activation mediated by T effector cell populations is pivotal in the onset of autoimmunity in type 1 diabetes (T1D). T follicular helper (TFH) cells are essential in the induction of high-affinity antibodies, and their precursor memory compartment circulates in the blood. The role of TFH precursors in the onset of islet autoimmunity and signaling pathways regulating their differentiation is incompletely understood. Here, we provide direct evidence that during onset of islet autoimmunity, the insulin-specific target T-cell population is enriched with a C-X-C chemokine receptor type 5 (CXCR5)+CD4+ TFH precursor phenotype. During onset of islet autoimmunity, the frequency of TFH precursors was controlled by high expression of microRNA92a (miRNA92a). miRNA92a-mediated TFH precursor induction was regulated by phosphatase and tension homolog (PTEN) - phosphoinositol-3-kinase (PI3K) signaling involving PTEN and forkhead box protein O1 (Foxo1), supporting autoantibody generation and triggering the onset of islet autoimmunity. Moreover, we identify Krueppel-like factor 2 (KLF2) as a target of miRNA92a in regulating human TFH precursor induction. Importantly, a miRNA92a antagomir completely blocked induction of human TFH precursors in vitro. More importantly, in vivo application of a miRNA92a antagomir to nonobese diabetic (NOD) mice with ongoing islet autoimmunity resulted in a significant reduction of TFH precursors in peripheral blood and pancreatic lymph nodes. Moreover, miRNA92a antagomir application reduced immune infiltration and activation in pancreata of NOD mice as well as humanized NOD Scid IL2 receptor gamma chain knockout (NSG) human leucocyte antigen (HLA)-DQ8 transgenic animals. We therefore propose that miRNA92a and the PTEN-PI3K-KLF2 signaling network could function as targets for innovative precision medicines to reduce T1D islet autoimmunity

    A miRNA181a/NFAT5 axis links impaired T cell tolerance induction with autoimmune type 1 diabetes.

    Get PDF
    Molecular checkpoints that trigger the onset of islet autoimmunity or progression to human type 1 diabetes (T1D) are incompletely understood. Using T cells from children at an early stage of islet autoimmunity without clinical T1D, we find that a microRNA181a (miRNA181a)-mediated increase in signal strength of stimulation and costimulation links nuclear factor of activated T cells 5 (NFAT5) with impaired tolerance induction and autoimmune activation. We show that enhancing miRNA181a activity increases NFAT5 expression while inhibiting FOXP3+regulatory T cell (Treg) induction in vitro. Accordingly, Treginduction is improved using T cells from NFAT5 knockout (NFAT5ko) animals, whereas altering miRNA181a activity does not affect Treginduction in NFAT5ko T cells. Moreover, high costimulatory signals result in phosphoinositide 3-kinase (PI3K)-mediated NFAT5, which interferes with FoxP3+Treginduction. Blocking miRNA181a or NFAT5 increases Treginduction in murine and humanized models and reduces murine islet autoimmunity in vivo. These findings suggest targeting miRNA181a and/or NFAT5 signaling for the development of innovative personalized medicines to limit islet autoimmunity

    Legitimacy and Identity in Germanic Management Accounting Research

    No full text
    The notion of 'Controlling', as it is commonly used in German-speaking countries, may be regarded as an equivalent term for management accounting. At the same time, there have been considerable efforts to establish Controlling as a discipline on its own, rather than to regard it simply as the German synonym of management accounting. This is reflected in many writings on Controlling which have tried to identify a possible 'core' or 'essence' of the subject. In this paper, we argue that this identity discourse may be interpreted as a strategy of Controlling researchers to achieve cognitive and sociopolitical legitimacy of their discipline. Drawing on interview material as well as publication and citation analyses, we show how various institutional pressures and constraints not only influenced the institutionalization of Controlling as an academic discipline but also impacted the form and substance of Controlling research. This raises some important questions for our understanding of academic disciplines more generally, some of which we address in this paper.

    miRNA regulation of T cells in islet autoimmunity and type 1 diabetes.

    No full text
    Purpose of Review Regulatory T cells (Tregs) are critical contributors to immune homeostasis and their dysregulation can lead to the loss of immune tolerance and autoimmune diseases like type 1 diabetes (T1D). Recent studies have highlighted microRNAs (miRNAs) as important regulators of the immune system, by fine-tuning relevant genes in various immune cell types. In this review article, we discuss recent insights into miRNA regulation of immune tolerance and activation. Specifically, we discuss how the dysregulation of miRNAs in T cells contributes to their aberrant function and the onset of islet autoimmunity, as well as their potential as targets of novel intervention strategies to interfere with autoimmune activation. Recent Findings Several studies have shown that the dysregulation of individual miRNAs in T cells can contribute to impaired immune tolerance, contributing to onset and progression of islet autoimmunity. Importantly, the targeting of these miRNAs, including miR-92a, miR-142-3p and miR-181a, resulted in relevant effects on downstream pathways, improved Treg function and reduced islet autoimmunity in murine models. miRNAs are critical regulators of immune homeostasis and the dysregulation of individual miRNAs in T cells contributes to aberrant T cell function and autoimmunity. The specific targeting of individual miRNAs could improve Treg homeostasis and therefore limit overshooting T cell activation and islet autoimmunity
    corecore