404 research outputs found

    Orbifold Reduction Of The Quark-Lepton Symmetric Model

    Full text link
    We investigate the quark-lepton symmetric gauge group in five dimensions, with the gauge symmetry broken by a combination of orbifold compactification of the extra dimension and the Higgs mechanism. The gauge sector of the model is investigated and contrasted with the four dimensional case. We obtain lower bounds on the mass of the exotic gauge bosons, the inverse compactification scale and the exotic leptons. Light neutrinos are obtained without requiring any scale larger than a TeV. However an ultra-violet cut-off of order 101110^{11} GeV is required to suppress proton decay inducing non-renormalizable operators.Comment: References added to match PRD versio

    The Effective Potential And Additional Large Radius Compactified Space-Time Dimensions

    Get PDF
    The consequences of large radius extra space-time compactified dimensions on the four dimensional one loop effective potential are investigated for a model which includes scalar self interactions and Yukawa coupling to fermions. The Kaluza-Klein tower of states associated with the extra compact dimensions shifts the location of the effective potential minimum and modifies its curvature. The dependence of these effects on the radius of the extra dimension is illustrated for various choices of coupling constants and masses. For large radii, the consequence of twisting the fermion boundary condition on the compactified dimensions is numerically found to produce but a negligible effect on the effective potential.Comment: 14 pages, LaTeX, 6 Postscript figure

    The geometrical form for the string space-time action

    Get PDF
    In the present article, we derive the space-time action of the bosonic string in terms of geometrical quantities. First, we study the space-time geometry felt by probe bosonic string moving in antisymmetric and dilaton background fields. We show that the presence of the antisymmetric field leads to the space-time torsion, and the presence of the dilaton field leads to the space-time nonmetricity. Using these results we obtain the integration measure for space-time with stringy nonmetricity, requiring its preservation under parallel transport. We derive the Lagrangian depending on stringy curvature, torsion and nonmetricity.Comment: 13 page

    Dualisation of Dualities, I

    Get PDF
    We analyse the global (rigid) symmetries that are realised on the bosonic fields of the various supergravity actions obtained from eleven-dimensional supergravity by toroidal compactification followed by the dualisation of some subset of fields. In particular, we show how the global symmetries of the action can be affected by the choice of this subset. This phenomenon occurs even with the global symmetries of the equations of motion. A striking regularity is exhibited by the series of theories obtained respectively without any dualisation, with the dualisation of only the Ramond-Ramond fields of the type IIA theory, with full dualisation to lowest degree forms, and finally for certain inverse dualisations (increasing the degrees of some forms) to give the type IIB series. These theories may be called the GL_A, D, E and GL_B series respectively. It turns out that the scalar Lagrangians of the E series are sigma models on the symmetric spaces K(E_{11-D})\backslash E_{11-D} (where K(G) is the maximal compact subgroup of G) and the other three series lead to models on homogeneous spaces K(G) \backslash G\semi \R^s. These can be understood from the E series in terms of the deletion of positive roots associated with the dualised scalars, which implies a group contraction. We also propose a constrained Lagrangian version of the even dimensional theories exhibiting the full duality symmetry and begin a systematic analysis of abelian duality subalgebras.Comment: Latex, 82 pages, minor corrections and references adde

    Testing the equivalence principle: why and how?

    Full text link
    Part of the theoretical motivation for improving the present level of testing of the equivalence principle is reviewed. The general rationale for optimizing the choice of pairs of materials to be tested is presented. One introduces a simplified rationale based on a trichotomy of competing classes of theoretical models.Comment: 11 pages, Latex, uses ioplppt.sty, submitted to Class. Quantum Gra

    Initial Condition for QGP Evolution from NEXUS

    Full text link
    We recently proposed a new approach to high energy nuclear scattering, which treats the initial stage of heavy ion collisions in a sophisticated way. We are able to calculate macroscopic quantities like energy density and velocity flow at the end of this initial stage, after the two nuclei having penetrated each other. In other words, we provide the initial conditions for a macroscopic treatment of the second stage of the collision. We address in particular the question of how to incorporate the soft component properly. We find almost perfect "Bjorken scaling": the rapidity coincides with the space-time rapidity, whereas the transverse flow is practically zero. The distribution of the energy density in the transverse plane shows typically a very "bumpy" structure.Comment: 17 pages, 24 figure

    Naturally split supersymmetry

    Get PDF
    Nonobservation of superparticles till date, new Higgs mass limits from the CMS and ATLAS experiments, WMAP constraints on relic density, various other low energy data, and the naturalness consideration, all considered simultaneously imply a paradigm shift of supersymmetric model building. In this paper we perform, for the first time, a detailed numerical study of brane-world induced supersymmetry breaking for both minimal and next-to-minimal scenarios. We observe that a naturally hierarchical spectrum emerges through an interplay of bulk, brane-localized and quasi-localized fields, which can gain more relevance in the subsequent phases of the LHC run.Comment: 6 pages, 6 eps figures; v2: minor updates, to appear in JHE

    Classical and Quantum Analysis of Repulsive Singularities in Four Dimensional Extended Supergravity

    Get PDF
    Non--minimal repulsive singularities (``repulsons'') in extended supergravity theories are investigated. The short distance antigravity properties of the repulsons are tested at the classical and the quantum level by a scalar test--particle. Using a partial wave expansion it is shown that the particle gets totally reflected at the origin. A high frequency incoming particle undergoes a phase shift of π2\frac{\pi}{2}. However, the phase shift for a low--frequency particle depends upon the physical data of the repulson. The curvature singularity at a finite distance rhr_h turns out to be transparent for the scalar test--particle and the coordinate singularity at the origin serves as a repulsive barrier at which particles bounce off.Comment: 20 pages, 14 figure

    Domain Walls in Massive Supergravities

    Get PDF
    We show how toroidally-compactified eleven-dimensional supergravity can be consistently truncated to yield a variety of maximally-supersymmetric ``massive'' supergravities in spacetime dimensions D8D\le 8. The mass terms arise as a consequence of making a more general ansatz than that in usual Kaluza-Klein dimensional reduction, in which one or more axions are given an additional linear dependence on one of the compactification coordinates. The lower-dimensional theories are nevertheless consistent truncations of eleven-dimensional supergravity. Owing to the fact that the generalised reduction commutes neither with U-duality nor with ordinary dimensional reduction, many different massive theories can result. The simplest examples arise when just a single axion has the additional linear coordinate dependence. We find five inequivalent such theories in D=7, and 71 inequivalent ones in D=4. The massive theories admit no maximally-symmetric vacuum solution, but they do admit (D2)(D-2)-brane solutions, i.e. domain walls, which preserve half the supersymmetry. We present examples of these solutions, and their oxidations to D=11. Some of the latter are new solutions of D=11 supergravity.Comment: latex, 32 papes, no figures, further comments and references adde

    New Sum Rules from Low Energy Compton Scattering on Arbitrary Spin Target

    Full text link
    We derive two sum rules by studying the low energy Compton scattering on a target of arbitrary (nonzero) spin j. In the first sum rule, we consider the possibility that the intermediate state in the scattering can have spin |j \pm 1| and the same mass as the target. The second sum rule applies if the theory at hand possesses intermediate narrow resonances with masses different from the mass of the scatterer. These sum rules are generalizations of the Gerasimov-Drell-Hearn-Weinberg sum rule. Along with the requirement of tree level unitarity, they relate different low energy couplings in the theory. Using these sum rules, we show that in certain cases the gyromagnetic ratio can differ from the "natural" value g=2, even at tree level, without spoiling perturbative unitarity. These sum rules can be used as constraints applicable to all supergravity and higher-spin theories that contain particles charged under some U(1) gauge field. In particular, applied to four dimensional N=8 supergravity in a spontaneously broken phase, these sum rules suggest that for the theory to have a good ultraviolet behavior, additional massive states need to be present, such as those coming from the embedding of the N=8 supergravity in type II superstring theory. We also discuss the possible implications of the sum rules for QCD in the large-N_c limit.Comment: 18 pages, v2: discussion on black hole contribution is included, references added; v3: extended discussion in introduction, version to appear in JHE
    corecore