5 research outputs found

    Characterization of the gene encoding human sarcolipin (SLN), a proteolipid associated with SERCA1: Absence of structural mutations in five patients with brody disease

    Get PDF
    Sarcolipin (SLN) is a low-molecular-weight protein that copurifies with the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+ ATPase (SERCA1). Genomic DNA and cDNA encoding human sarcolipin (SLN) were isolated and characterized and the SLN gene was mapped to chromosome 11q22-q23. Human, rabbit, and mouse cDNAs encode a protein of 31 amino acids. Homology of SLN with phospholamban (PLN) suggests that the first 7 hydrophilic amino acids are cytoplasmic, the next 19 hydrophobic amino acids form a single transmembrane helix, and the last 5 hydrophilic amino acids are lumenal. The cytoplasmic and transmembrane sequences are not well conserved among the three species, but the lumenal sequence is highly conserved. Like SERCA1, SLN is highly expressed in rabbit fast-twitch skeletal muscle, but it is expressed to a lower extent in slow-twitch muscle and to an even lower extent in cardiac muscle, where SERCA2a and PLN are highly expressed. It is expressed in only trace amounts in pancreas and prostate. SLN and PLN genes resemble each other in having two small exons, with their entire coding sequences lying in exon 2 and a large intron separating the two segments. Brody disease is an inherited disorder of skeletal muscle function, characterized by exercise-induced impairment of muscle relaxation. Mutations in the ATP2A1 gene encoding SERCA1 have been associated with the autosomal recessive inheritance of Brody disease in three families, but not with autosomal dominant inheritance of the disease. A search for mutations in the SLN gene in five Brody families, four of which were not linked to ATP2A1, did not reveal any alterations in coding, splice junction or promoter sequences. The homozygous deletion of C438 in the coding sequence of ATP2A1 in Brody disease family 3, leading to a frameshift and truncation following Pro147 in SERCA1, is the fourth ATP2A1 mutation to be associated with autosomal recessive Brody disease

    Copy number variation in obsessive-compulsive disorder and tourette syndrome: A cross-disorder study

    No full text
    Objective Obsessive-compulsive disorder (OCD) and Tourette syndrome (TS) are heritable neurodevelopmental disorders with a partially shared genetic etiology. This study represents the first genome-wide investigation of large (>500 kb), rare (<1%) copy number variants (CNVs) in OCD and the largest genome-wide CNV analysis in TS to date. Method The primary analyses used a cross-disorder design for 2,699 case patients (1,613 ascertained for OCD, 1,086 ascertained for TS) and 1,789 controls. Parental data facilitated a de novo analysis in 348 OCD trios. Results Although no global CNV burden was detected in the cross-disorder analysis or in secondary, disease-specific analyses, there was a 3.3-fold increased burden of large deletions previously associated with other neurodevelopmental disorders (p =.09). Half of these neurodevelopmental deletions were located in a single locus, 16p13.11 (5 case patient deletions: 0 control deletions, p =.08 in the current study, p =.025 compared to published controls). Three 16p13.11 deletions were confirmed de novo, providing further support for the etiological significance of this region. The overall OCD de novo rate was 1.4%, which is intermediate between published rates in controls (0.7%) and in individuals with autism or schizophrenia (2-4%). Conclusion Several converging lines of evidence implicate 16p13.11 deletions in OCD, with weaker evidence for a role in TS. The trend toward increased overall neurodevelopmental CNV burden in TS and OCD suggests that deletions previously associated with other neurodevelopmental disorders may also contribute to these phenotypes

    Evidence for three genetic loci involved in both anorexia nervosa risk and variation of body mass index

    No full text
    The maintenance of normal body weight is disrupted in patients with anorexia nervosa (AN) for prolonged periods of time. Prior to the onset of AN, premorbid body mass index (BMI) spans the entire range from underweight to obese. After recovery, patients have reduced rates of overweight and obesity. As such, loci involved in body weight regulation may also be relevant for AN and vice versa. Our primary analysis comprised a cross-trait analysis of the 1000 single-nucleotide polymorphisms (SNPs) with the lowest P-values in a genome-wide association meta-analysis (GWAMA) of AN (GCAN) for evidence of association in the largest published GWAMA for BMI (GIANT). Subsequently we performed sex-stratified analyses for these 1000 SNPs. Functional ex vivo studies on four genes ensued. Lastly, a look-up of GWAMA-derived BMI-related loci was performed in the AN GWAMA. We detected significant associations (P-values <5 Ă— 10-5, Bonferroni-corrected P<0.05) for nine SNP alleles at three independent loci. Interestingly, all AN susceptibility alleles were consistently associated with increased BMI. None of the genes (chr. 10: CTBP2, chr. 19: CCNE1, chr. 2: CARF and NBEAL1; the latter is a region with high linkage disequilibrium) nearest to these SNPs has previously been associated with AN or obesity. Sex-stratified analyses revealed that the strongest BMI signal originated predominantly from females (chr. 10 rs1561589; Poverall: 2.47 Ă— 10-06/Pfemales: 3.45 Ă— 10-07/Pmales: 0.043). Functional ex vivo studies in mice revealed reduced hypothalamic expression of Ctbp2 and Nbeal1 after fasting. Hypothalamic expression of Ctbp2 was increased in diet-induced obese (DIO) mice as compared with age-matched lean controls. We observed no evidence for associations for the look-up of BMI-related loci in the AN GWAMA. A cross-trait analysis of AN and BMI loci revealed variants at three chromosomal loci with potential joint impact. The chromosome 10 locus is particularly promising given that the association with obesity was primarily driven by females. In addition, the detected altered hypothalamic expression patterns of Ctbp2 and Nbeal1 as a result of fasting and DIO implicate these genes in weight regulation

    Annual Selected Bibliography

    No full text
    corecore