11 research outputs found

    Bedside screening to detect oropharyngeal dysphagia in patients with neurological disorders: an updated systematic review

    No full text
    Oropharyngeal dysphagia is a highly prevalent comorbidity in neurological patients and presents a serious health threat, which may lead to outcomes of aspiration pneumonia ranging from hospitalization to death. Therefore, an early identification of risk followed by an accurate diagnosis of oropharyngeal dysphagia is fundamental. This systematic review provides an update of currently available bedside screenings to identify oropharyngeal dysphagia in neurological patients. An electronic search was carried out in the databases PubMed, Embase, CINAHL, and PsychInfo (formerly PsychLit), and all hits from 2008 up to December 2012 were included in the review. Only studies with sufficient methodological quality were considered, after which the psychometric characteristics of the screening tools were determined. Two relevant bedside screenings were identified, with a minimum sensitivity and specificity of ≥70 and ≥60 %, respectively

    Biochemical and pharmacological role of A1adenosine receptors and their modulation as novel therapeutic strategy

    No full text
    Adenosine, the purine nucleoside, mediates its effects through activation of four G-protein coupled adenosine receptors (ARs) named as A1, A2A, A2Band A3. In particular, A1ARs are distributed through the body, primarily inhibitory in the regulation of adenylyl cyclase activity and able to reduce the cyclic AMP levels. Considerable advances have been made in the pharmacological and molecular characterization of A1ARs, which had been proposed as targets for the discovery and drug design of antagonists, agonists and allosteric enhancers. Several lines of evidence indicate that adenosine interacting with A1ARs may be an endogenous protective agent in the human body since it prevents the damage caused by various pathological conditions, such as in ischemia/hypoxia, epileptic seizures, excitotoxic neuronal injury and cardiac arrhythmias in cardiovascular system. It has also been reported that one of the most promising targets for the development of new anxiolytic drugs could be A1ARs, and that their activation may reduce pain signaling in the spinal cord. A1AR antagonists induce diuresis and natriuresis in various experimental models, mediating the inhibition of A1ARs in the proximal tubule which is primarily responsible for reabsorption and fluid uptake. In addition, the results of various studies indicate that adenosine is present within pancreatic islets and is implicated through A1ARs in the regulation of insulin secretion and in glucose concentrations. In the present paper it will become apparent that A1ARs could be implicated in the pharmacological treatment of several pathologies with an important influence on human health
    corecore