26 research outputs found

    Theory of space-time supermodes in planar multimode waveguides

    Full text link
    When an optical pulse is focused into a multimode waveguide or fiber, the energy is divided among the available guided modes. Consequently, the initially localized intensity spreads transversely, the spatial profile undergoes rapid variations with axial propagation, and the pulse disperses temporally. Space-time (ST) supermodes are pulsed guided field configurations that propagate invariantly in multimode waveguides by assigning each mode to a prescribed wavelength. ST supermodes can be thus viewed as spectrally discrete, guided-wave counterpart of the recently demonstrated propagation-invariant ST wave packets in free space. The group velocity of an ST supermode is tunable independently -- in principle -- of the waveguide structure, group-velocity dispersion is eliminated or dramatically curtailed, and the time-averaged intensity profile is axially invariant along the waveguide in absence of mode-coupling. We establish here a theoretical framework for studying ST supermodes in planar waveguides. Modal engineering allows sculpting this axially invariant transverse intensity profile from an on-axis peak or dip (dark beam), to a multi-peak or flat distribution. Moreover, ST supermodes can be synthesized using spectrally incoherent light, thus paving the way to potential applications in optical beam delivery for lighting applications

    Transverse spin angular momentum of space-time surface plasmon polariton wave packet

    Full text link
    In addition to longitudinal spin angular momentum (SAM) along the axis of propagation of light, spatially structured electromagnetic fields such as evanescent waves and focused beams have recently been found to possess transverse SAM in the direction perpendicular to the axis of propagation. In particular, the SAM of SPPs with spatial structure has been extensively studied in the last decade after it became clear that evanescent fields with spatially structured energy flow generate threedimensional spin texture. Here we present numerical calculations of the space-time surface plasmon polariton (ST-SPP) wave packet, a plasmonic bullet that propagates at an arbitrary group velocity while maintaining its spatial distribution. ST-SPP wave packets with complex spatial structure and energy flow density distribution determined by the group velocity are found to propagate with accompanying three-dimensional spin texture and finite topological charge density. Furthermore, the spatial distribution of the spin texture and topological charge density determined by the spatial structure of the SPP is controllable, and the deformation associated with propagation is negligible. ST-SPP wave packets, which can stably transport customizable three-dimensional spin textures and topological charge densities, can be excellent subjects of observation in studies of spinphotonics and optical topological materials.Comment: 15 pages, 6 figure

    Observation of ultrabroadband striped space-time surface plasmon polaritons

    Full text link
    Because surface plasmon polaritons (SPPs) are surface waves characterized by one free transverse dimension, the only monochromatic diffraction-free spatial profiles for SPPs are cosine and Airy waves. Pulsed SPP wave packets have been recently formulated that are propagation-invariant and localized in the in-plane dimensions by virtue of a tight spectral association between their spatial and temporal frequencies, which have thus been dubbed `space-time' (ST) SPPs. Because of the spatio-temporal spectral structure unique to ST-SPPs, the optimal launching strategy of such novel plasmonic field configurations remains an open question. We present here a critical step towards realizing ST-SPPs by reporting observations of ultrabroadband striped ST-SPPs. These are SPPs in which each wavelength travels at a prescribed angle with respect to the propagation axis to produce a periodic (striped) transverse spatial profile that is diffraction-free. We start with a free-space ST wave packet that is coupled to a ST-SPP at a gold-dielectric interface, and unambiguously identify the ST-SPP via an axial beating detected in two-photon fluorescence produced by the superposition of incident ST wave packet and the excited surface-bound ST-SPP. These results highlight a viable approach for efficient and reliable coupling to ST-SPPs, and thus represent the first crucial step towards realization of the full potential of ST-SPPs for plasmonic sensing and imaging.Comment: 9 pages, 8 figure

    Focus issue introduction: Advanced Solid-State Lasers (ASSL) 2014

    Get PDF
    The editors introduce the focus issue on Advanced Solid-State Lasers (ASSL) 2014, which is based on the topics presented at a congress of the same name held in Shanghai, China, from October 27 to November 1, 2014. This Focus issue, jointly prepared by Optics Express and Optical Materials Express, includes 28 contributed papers (21 for Optics Express and 7 for Optical Materials Express) selected from the voluntary submissions by attendees who presented at the congress and have extended their work into complete research articles. We hope this focus issue offers a useful snapshot of the variety of topical discussions held at the congress and will contribute to the further expansion of the associated research areas
    corecore