471 research outputs found
Ambulatory Assessment of Ankle and Foot Dynamics
Ground reaction force (GRF) measurement is important in the analysis of human body movements. The main drawback of the existing measurement systems is the restriction to a laboratory environment. This paper proposes an ambulatory system for assessing the dynamics of ankle and foot, which integrates the measurement of the GRF with the measurement of human body movement. The GRF and the center of pressure (CoP) are measured using two six-degrees-of-freedom force sensors mounted beneath the shoe. The movement of foot and lower leg is measured using three miniature inertial sensors, two rigidly attached to the shoe and one on the lower leg. The proposed system is validated using a force plate and an optical position measurement system as a reference. The results show good correspondence between both measurement systems, except for the ankle power estimation. The root mean square (RMS) difference of the magnitude of the GRF over 10 evaluated trials was (0.012 plusmn 0.001) N/N (mean plusmn standard deviation), being (1.1 plusmn 0.1)% of the maximal GRF magnitude. It should be noted that the forces, moments, and powers are normalized with respect to body weight. The CoP estimation using both methods shows good correspondence, as indicated by the RMS difference of (5.1 plusmn 0.7) mm, corresponding to (1.7 plusmn 0.3)% of the length of the shoe. The RMS difference between the magnitudes of the heel position estimates was calculated as (18 plusmn 6) mm, being (1.4 plusmn 0.5)% of the maximal magnitude. The ankle moment RMS difference was (0.004 plusmn 0.001) Nm/N, being (2.3 plusmn 0.5)% of the maximal magnitude. Finally, the RMS difference of the estimated power at the ankle was (0.02 plusmn 0.005) W/N, being (14 plusmn 5)% of the maximal power. This power difference is caused by an inaccurate estimation of the angular velocities using the optical reference measurement system, which is due to considering the foot as a single segment. The ambulatory system considers separat- - e heel and forefoot segments, thus allowing an additional foot moment and power to be estimated. Based on the results of this research, it is concluded that the combination of the instrumented shoe and inertial sensing is a promising tool for the assessment of the dynamics of foot and ankle in an ambulatory setting
Estimation of hand and finger kinematics using inertial sensors
A new dataglove is developed and presented. Inertial sensors are placed on various hand and finger segments to estimate the hand pose
Fast Data Sharing within a distributed multithreaded control framework for robot teams
In this paper a data sharing framework for multithreaded, distributed control programs is described that is realized in C++ by means of only a few, powerful classes and templates. Fast data exchange of entire data structures is supported using sockets as communication medium. Access methods are provided that preserve data consistency and synchronize the data exchange. The framework has been successfully used to build a distributed robot soccer control system running on as many computers as needed
Estimation of ground reaction forces and moments during gait using only inertial motion capture
Ground reaction forces and moments (GRF&M) are important measures used as input in biomechanical analysis to estimate joint kinetics, which often are used to infer information for many musculoskeletal diseases. Their assessment is conventionally achieved using laboratory-based equipment that cannot be applied in daily life monitoring. In this study, we propose a method to predict GRF&M during walking, using exclusively kinematic information from fully-ambulatory inertial motion capture (IMC). From the equations of motion, we derive the total external forces and moments. Then, we solve the indeterminacy problem during double stance using a distribution algorithm based on a smooth transition assumption. The agreement between the IMC-predicted and reference GRF&M was categorized over normal walking speed as excellent for the vertical (Ď = 0.992, rRMSE = 5.3%), anterior (Ď = 0.965, rRMSE = 9.4%) and sagittal (Ď = 0.933, rRMSE = 12.4%) GRF&M components and as strong for the lateral (Ď = 0.862, rRMSE = 13.1%), frontal (Ď = 0.710, rRMSE = 29.6%), and transverse GRF&M (Ď = 0.826, rRMSE = 18.2%). Sensitivity analysis was performed on the effect of the cut-off frequency used in the filtering of the input kinematics, as well as the threshold velocities for the gait event detection algorithm. This study was the first to use only inertial motion capture to estimate 3D GRF&M during gait, providing comparable accuracy with optical motion capture prediction. This approach enables applications that require estimation of the kinetics during walking outside the gait laboratory
- âŚ