744 research outputs found
Assessment of MRI issues at 3-Tesla for metallic surgical implants: findings applied to 61 additional skin closure staples and vessel ligation clips
<p>Abstract</p> <p>Purpose</p> <p>Metallic skin closure staples and vessel ligation clips should be tested at 3-Tesla to characterize MRI issues in order to ensure patient safety. Therefore, metallic surgical implants were assessed at 3-Tesla for magnetic field interactions, MRI-related heating, and artifacts.</p> <p>Methods</p> <p>A skin closure staple (Visistat Skin Stapler, staple, Polytetrafluoroethylene, PTFE, coated 316L/316LVM stainless steel; Teleflex Medical, Durham, NC) and a vessel ligation clip (Hemoclip Traditional, stainless steel; Teleflex Medical, Durham, NC) that represented the largest metallic sizes made from materials with the highest magnetic susceptibilities (i.e., based on material information) among 61 other surgical implants (52 metallic implants, 9 nonmetallic implants) underwent evaluation for magnetic field interactions, MRI-related heating, and artifacts using standardized techniques. MRI-related heating was assessed by placing each implant in a gelled-saline-filled phantom with MRI performed using a transmit/receive RF body coil at an MR system reported, whole body averaged SAR of 2.9-W/kg for 15-min. Artifacts were characterized using T1-weighted, SE and GRE pulse sequences.</p> <p>Results</p> <p>Each surgical implant showed minor magnetic field interactions (20- and 27-degrees, which is acceptable from a safety consideration). Heating was not substantial (highest temperature change, ≤ 1.6°C). Artifacts may create issues if the area of interest is in the same area or close to the respective surgical implant.</p> <p>Conclusions</p> <p>The results demonstrated that it would be acceptable for patients with these metallic surgical implants to undergo MRI at 3-Tesla or less. Because of the materials and dimensions of the surgical implants that underwent testing, these findings pertain to 61 additional similar implants.</p
Biological effects of exposure to magnetic resonance imaging: an overview
The literature on biological effects of magnetic and electromagnetic fields commonly utilized in magnetic resonance imaging systems is surveyed here. After an introduction on the basic principles of magnetic resonance imaging and the electric and magnetic properties of biological tissues, the basic phenomena to understand the bio-effects are described in classical terms. Values of field strengths and frequencies commonly utilized in these diagnostic systems are reported in order to allow the integration of the specific literature on the bio-effects produced by magnetic resonance systems with the vast literature concerning the bio-effects produced by electromagnetic fields. This work gives an overview of the findings about the safety concerns of exposure to static magnetic fields, radio-frequency fields, and time varying magnetic field gradients, focusing primarily on the physics of the interactions between these electromagnetic fields and biological matter. The scientific literature is summarized, integrated, and critically analyzed with the help of authoritative reviews by recognized experts, international safety guidelines are also cited
Impact of gonadectomy on blood pressure regulation in ageing male and female rats
Sexual dimorphism in blood pressure has been associated with differential expression of the angiotensin II (AII) receptors and with activity of the nervous system. It is generally accepted that aging affects kidney function as well as autonomic nervous system and hormonal balance. Given that hypertension is more prevalent in men than women until women reach their seventh decade we hypothesised that females would be relatively protected from adverse effects of ageing compared to males, and that this would be mediated by the protective effect of ovarian steroids. Intact and gonadectomised male and female normotensive Wistar rats aged 6, 12 and 18 months were used to study renal function, blood pressure, heart rate and blood pressure variability. We observed that intact females had lower levels of proteinuria and higher (12.5%) creatinine clearance compared to intact males, and that this difference was abolished by castration but not by ovariectomy. Ovariectomy resulted in a change by 9% in heart rate, resulting in similar cardiovascular parameters to those observed in males or gonadectomised males. Spectral analysis of systolic blood pressure revealed that high frequency power spectra were significantly elevated in the females vs. males and were reduced by ovariectomy. Taken altogether the results show that females are protected from age-related declining renal function and to a lesser extent from rising blood pressure in comparison to males. Whilst ovariectomy had some deleterious effects in females, the strongest effects were associated with gonadectomy in males, suggesting a damaging effect of male hormones
Systematisation of spatial uncertainties for comparison between a MR and a CT-based radiotherapy workflow for prostate treatments
<p>Abstract</p> <p>Background</p> <p>In the present work we compared the spatial uncertainties associated with a MR-based workflow for external radiotherapy of prostate cancer to a standard CT-based workflow. The MR-based workflow relies on target definition and patient positioning based on MR imaging. A solution for patient transport between the MR scanner and the treatment units has been developed. For the CT-based workflow, the target is defined on a MR series but then transferred to a CT study through image registration before treatment planning, and a patient positioning using portal imaging and fiducial markers.</p> <p>Methods</p> <p>An "open bore" 1.5T MRI scanner, Siemens Espree, has been installed in the radiotherapy department in near proximity to a treatment unit to enable patient transport between the two installations, and hence use the MRI for patient positioning. The spatial uncertainty caused by the transport was added to the uncertainty originating from the target definition process, estimated through a review of the scientific literature. The uncertainty in the CT-based workflow was estimated through a literature review.</p> <p>Results</p> <p>The systematic uncertainties, affecting all treatment fractions, are reduced from 3-4 mm (1Sd) with a CT based workflow to 2-3 mm with a MR based workflow. The main contributing factor to this improvement is the exclusion of registration between MR and CT in the planning phase of the treatment.</p> <p>Conclusion</p> <p>Treatment planning directly on MR images reduce the spatial uncertainty for prostate treatments.</p
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Experimental One-Way Quantum Computing
Standard quantum computation is based on sequences of unitary quantum logic
gates which process qubits. The one-way quantum computer proposed by
Raussendorf and Briegel is entirely different. It has changed our understanding
of the requirements for quantum computation and more generally how we think
about quantum physics. This new model requires qubits to be initialized in a
highly-entangled cluster state. From this point, the quantum computation
proceeds by a sequence of single-qubit measurements with classical feedforward
of their outcomes. Because of the essential role of measurement a one-way
quantum computer is irreversible. In the one-way quantum computer the order and
choices of measurements determine the algorithm computed. We have
experimentally realized four-qubit cluster states encoded into the polarization
state of four photons. We fully characterize the quantum state by implementing
the first experimental four-qubit quantum state tomography. Using this cluster
state we demonstrate the feasibility of one-way quantum computing through a
universal set of one- and two-qubit operations. Finally, our implementation of
Grover's search algorithm demonstrates that one-way quantum computation is
ideally suited for such tasks.Comment: 36 pages, 6 figures, 2 table
- …