112 research outputs found

    The 2060 Chiron: CCD photometry

    Get PDF
    R-band CCD photometry of 2060 was carried out on nine nights in Nov. and Dec. 1986. The rotation period is 5.9181 + or - 0.0003 hr and the peak to peak lightcurve amplitude is 0.088 + or - 0.0003 mag. Photometric parameters are H sub R = 6.24 + or - 0.02 mag and G sub R = + or - 0.15, though formal errors may not be realistic. The lightcurve has two pairs of extrema, but its asymmetry, as evidenced by the presence of significant odd Fourier harmonics, suggests macroscopic surface irregularities and/or the presence of some large scale albedo variegation. The observational rms residual is + or - 0.015 mag. On time scales from minutes to days there is no evidence for nonperiodic (cometary) brightness changes at the level of a few millimagnitudes

    Chiron: Evidence for historic cometary activity

    Get PDF
    The non-asteroidal brightening of (2060) Chiron, first noted by Tholen in 1988 is now ascribed to cometary activity. Photometry since 1988 has revealed a broad surge in brightness that peaked in 1989 about 1.0 mag above the brightness in the mid-1980s. The surge is evidently due to sporatic formation of dust coma, which is itself driven by the presence of extremely volatile ices at or near the surface. CN emission was recently reported. Since Chiron is now nearing perihelion, there is interest in determining whether it has exhibited anomalous brightening in the past, particularly at greater heliocentric distances. Photographic plates dating back to 1895 are known to contain images of Chiron. Using some of these archival material, the initial results are presented for a project to determine Chiron's brightness history over orbital timescales. A particularly homogeneous and high-quality set of plates taken prior to and around the time of Chiron's discovery in Oct. 1977 at the 1.2 m Oschin Schmidt telescope at Mt. Palomar Observatory were examined. Images of Chiron were identified and digitized using a PDS microdensitometer, and images of field stars around Chiron were both similarly digitized and photometrically calibrated using recently acquired B and V band CCD frames. As a result of the present work, eleven new data, including estimated errors, were added between 1969 and 1977. The implications that Chiron can be active at any heliocentric distance in its present orbit suggest that the active volatile is either N2, CH4, or CO, and that a substantial degree of mantling may have developed. Further historical data is presented, the error bars discussed, and possible mechanisms suggested for the observed activity

    Comet 17P/Holmes in Outburst: The Near Infrared Spectrum

    Full text link
    Jupiter family comet 17P/Holmes underwent a remarkable outburst on UT 2007 Oct. 24, in which the integrated brightness abruptly increased by about a factor of a million.We obtained near infrared (0.8 - 4.2 micron) spectra of 17P/Holmes on UT 2007 Oct. 27, 28 and 31, using the 3.0-m NASA Infrared Telescope Facility (IRTF) atop Mauna Kea. Two broad absorption bands were found in the reflectance spectra with centers (at 2 micron and 3 micron, respectively) and overall shapes consistent with the presence of water ice grains in the coma. Synthetic mixing models of these bands suggest an origin in cold ice grains of micron size. Curiously, though, the expected 1.5 micron band of water ice was not detected in our data, an observation for which we have no explanation. Simultaneously, excess thermal emission in the spectra at wavelengths beyond 3.2 micron has a color temperature of 360 +/- 40 K (corresponding to a superheat factor of ~ 2.0 +/- 0.2 at 2.45 AU). This is too hot for these grains to be icy. The detection of both water ice spectral features and short-wavelength thermal emission suggests that the coma of 17P/Holmes has two components (hot, refractory dust and cold ice grains) which are not in thermal contact. A similarity to grains ejected into the coma of 9P/Tempel 1 by the Deep Impact spacecraft is noted.Comment: 27 pages, 11 figures, accepted for publication in A

    Near infra-red spectroscopy of the asteroid 21 Lutetia. II. Rotationally resolved spectroscopy of the surface

    Get PDF
    Reproduced with permission. Copyright ESO. Article published by EDP Sciences and available at http://www.aanda.orgInternational audienceAims. In the framework of the ground-based science campaign dedicated to the encounter with the Rosetta spacecraft, the mineralogy of the asteroid (21) Lutetia was investigated. Methods. Near-infrared (NIR) spectra of the asteroid in the 0.8−2.5 μm spectral range were obtained with SpeX/IRTF in remote observing mode from Meudon, France in March and April 2006. We analysed these data together with previously acquired spectra - March 2003, August 2004. I-band relative photometric data obtained on 20 January 2006 using the 105 cm telescope from Pic du Midi, France has been used to build the ephemeris for physical observations. A χ2 test using meteorite spectra from the RELAB database was performed in order to find the best fit of complete visible + infrared (VNIR) spectra of Lutetia. Results. The new spectra reveal no absorption features. We find a clear spectral variation (slope), and a good correspondence between spectral variations and rotational phase. Two of the most different spectra correspond to two opposite sides of the asteroid (sub-Earth longitude difference around 180◦). For the neutral spectra a carbonaceous chondrite spectrum yields the best fit, while for those with a slightly positive slope the enstatitic chondrite spectra are the best analog. Based on the chosen subset of the meteorite samples, our analysis suggests a primitive, chondritic nature for (21) Lutetia. Differences in spectra are interpreted in terms of the coexistence of several lithologies on the surface where the aqueous alteration played an important role

    Temporal Localized Structures in mode-locked Vertical External-Cavity Surface-Emitting Lasers

    Full text link
    Temporal Localized States (TLSs) are individually addressable structures traveling in optical resonators. They can be used as bits of information and to generate frequency combs with tunable spectral density. We show that a pair of specially designed nonlinear mirrors, a 1/2 Vertical-Cavity Surface-Emitting Laser and a Semiconductor Saturable Absorber, coupled in self-imaging conditions, can lead to the generation of such TLSs. Our results indicate how a conventional passive mode- locking scheme can be adapted to provide a robust and simple system emitting TLSs and it paves the way towards the observation of three dimensions confined states, the so-called light bullets.Comment: submission to Optics Letter

    A spectral comparison of (379) Huenna and its satellite

    Get PDF
    We present near-infrared spectral measurements of Themis family asteroid (379) Huenna (D~98 km) and its 6 km satellite using SpeX on the NASA IRTF. The companion was farther than 1.5" from the primary at the time of observations and was approximately 5 magnitudes dimmer. We describe a method for separating and extracting the signal of a companion asteroid when the signal is not entirely resolved from the primary. The spectrum of (379) Huenna has a broad, shallow feature near 1 {\mu}m and a low slope, characteristic of C-type asteroids. The secondary's spectrum is consistent with the taxonomic classification of C-complex or X-complex. The quality of the data was not sufficient to identify any subtle feature in the secondary's spectrum.Comment: 6 pages, 4 figures, 2 tables - Accepted for publication in Icaru

    How Do Persons with Young and Late Onset Dementia Die?

    Get PDF
    Background: End of life symptoms and symptom management as well as the quality of dying (QoD) of persons with advanced dementia (PWAD) have not yet been systematically studied in Germany. Objective: 1) To investigate symptoms, treatment and care at the end of life, advance care planning, and circumstances of death of recently deceased PWAD;2) To determine whether there are differences between young and late onset dementia (YOD and LOD). Methods: The study was performed in the context of the project EPYLOGE (IssuEs in Palliative care for persons in advanced and terminal stages of Young-onset and Late-Onset dementia in Germany). Closest relatives of recently deceased patients with advanced YOD (N = 46) and LOD (N = 54) living at home or in long term care were interviewed. Results: Circumstances of death, symptoms, and treatment appeared to be similar between YOD and LOD, except that persons with LOD had significantly more somatic comorbidities and were admitted to hospital in the last three months of life more often than persons with LOD. At end of life, 60% of PWAD appeared to be at peace. Difficulty swallowing, gurgling, shortness of breath, and discomfort were observed most frequently. Large interindividual differences in suffering and QoD were present. Determinants of QoD were not identified. Conclusion: Our findings suggest that low QoD was caused by inadequate recognition and/or insufficient treatment of burdensome physical and emotional symptoms. PWADs' needs should be assessed regularly, and strategies focusing on treatment and implementing support for both the patient and caregiver must be established

    Twenty years of SpeX: Accuracy limits of spectral slope measurements in asteroid spectroscopy

    Full text link
    We examined two decades of SpeX/NASA Infrared Telescope Facility observations from the Small Main-Belt Asteroid Spectroscopic Survey (SMASS) and the MIT-Hawaii Near-Earth Object Spectroscopic Survey (MITHNEOS) to investigate uncertainties and systematic errors in reflectance spectral slope measurements of asteroids. From 628 spectra of 11 solar analogs used for calibration of the asteroid spectra, we derived an uncertainty of 4.2%/micron on slope measurements over 0.8 to 2.4 micron. Air mass contributes to -0.92%/micron per 0.1 unit air mass difference between the asteroid and the solar analog, and therefore for an overall 2.8%/micron slope variability in SMASS and MITHNEOS designed to operate within 1.0 to 1.3 air mass. No additional observing conditions (including parallactic angle, seeing and humidity) were found to contribute systematically to slope change. We discuss implications for asteroid taxonomic classification works. Uncertainties provided in this study should be accounted for in future compositional investigation of small bodies to distinguish intrinsic heterogeneities from possible instrumental effects.Comment: 15 pages, 11 figures, accepted for publication in ApJ

    The Debiased Compositional Distribution of MITHNEOS : Global Match between the Near-Earth and Main-belt Asteroid Populations, and Excess of D-type Near-Earth Objects

    Get PDF
    We report 491 new near-infrared spectroscopic measurements of 420 near-Earth objects (NEOs) collected on the NASA InfraRed Telescope Facility as part of the MIT-Hawaii NEO Spectroscopic Survey. These measurements were combined with previously published data from Binzel et al. and bias-corrected to derive the intrinsic compositional distribution of the overall NEO population, as well as of subpopulations coming from various escape routes (ERs) in the asteroid belt and beyond. The resulting distributions reflect well the overall compositional gradient of the asteroid belt, with decreasing fractions of silicate-rich (S- and Q-type) bodies and increasing fractions of carbonaceous (B-, C-, D- and P-type) bodies as a function of increasing ER distance from the Sun. The close compositional match between NEOs and their predicted source populations validates dynamical models used to identify ERs and argues against any strong composition change with size in the asteroid belt between similar to 5 km and similar to 100 m. A notable exception comes from the overabundance of D-type NEOs from the 5:2J and, to a lesser extend, the 3:1J and nu (6) ERs, hinting at the presence of a large population of small D-type asteroids in the main belt. Alternatively, this excess may indicate preferential spectral evolution from D-type surfaces to C and P types as a consequence of space weathering, or point to the fact that D-type objects fragment more often than other spectral types in the NEO space. No further evidence for the existence of collisional families in the main belt, below the detection limit of current main-belt surveys, was found in this work.Peer reviewe
    corecore