118 research outputs found

    Molecular crowding defines a common origin for the Warburg effect in proliferating cells and the lactate threshold in muscle physiology

    Get PDF
    Aerobic glycolysis is a seemingly wasteful mode of ATP production that is seen both in rapidly proliferating mammalian cells and highly active contracting muscles, but whether there is a common origin for its presence in these widely different systems is unknown. To study this issue, here we develop a model of human central metabolism that incorporates a solvent capacity constraint of metabolic enzymes and mitochondria, accounting for their occupied volume densities, while assuming glucose and/or fatty acid utilization. The model demonstrates that activation of aerobic glycolysis is favored above a threshold metabolic rate in both rapidly proliferating cells and heavily contracting muscles, because it provides higher ATP yield per volume density than mitochondrial oxidative phosphorylation. In the case of muscle physiology, the model also predicts that before the lactate switch, fatty acid oxidation increases, reaches a maximum, and then decreases to zero with concomitant increase in glucose utilization, in agreement with the empirical evidence. These results are further corroborated by a larger scale model, including biosynthesis of major cell biomass components. The larger scale model also predicts that in proliferating cells the lactate switch is accompanied by activation of glutaminolysis, another distinctive feature of the Warburg effect. In conclusion, intracellular molecular crowding is a fundamental constraint for cell metabolism in both rapidly proliferating- and non-proliferating cells with high metabolic demand. Addition of this constraint to metabolic flux balance models can explain several observations of mammalian cell metabolism under steady state conditions

    State of the art of immunoassay methods for B-type natriuretic peptides: An update

    Get PDF
    The aim of this review article is to give an update on the state of the art of the immunoassay methods for the measurement of B-type natriuretic peptide (BNP) and its related peptides. Using chromatographic procedures, several studies reported an increasing number of circulating peptides related to BNP in human plasma of patients with heart failure. These peptides may have reduced or even no biological activity. Furthermore, other studies have suggested that, using immunoassays that are considered specific for BNP, the precursor of the peptide hormone, proBNP, constitutes a major portion of the peptide measured in plasma of patients with heart failure. Because BNP immunoassay methods show large (up to 50%) systematic differences in values, the use of identical decision values for all immunoassay methods, as suggested by the most recent international guidelines, seems unreasonable. Since proBNP significantly cross-reacts with all commercial immunoassay methods considered specific for BNP, manufacturers should test and clearly declare the degree of cross-reactivity of glycosylated and non-glycosylated proBNP in their BNP immunoassay methods. Clinicians should take into account that there are large systematic differences between methods when they compare results from different laboratories that use different BNP immunoassays. On the other hand, clinical laboratories should take part in external quality assessment (EQA) programs to evaluate the bias of their method in comparison to other BNP methods. Finally, the authors believe that the development of more specific methods for the active peptide, BNP1–32, should reduce the systematic differences between methods and result in better harmonization of results

    Macrophage uptake switches on OCT contrast of superparamagnetic nanoparticles for imaging of atherosclerotic plaques

    No full text
    Angela Ariza de Schellenberger,1,* Wolfram C Poller,2,* Verena Stangl,2 Ulf Landmesser,3 Eyk Schellenberger1 1Department of Radiology, Charité-Universitätsmedizin Berlin, Germany; 2Department of Interventional Cardiology, Charité-Universitätsmedizin Berlin, Germany; 3Department of Cardiology, Charité- Universitätsmedizin Berlin, Berlin Institute of Health (BIH) and Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), Berlin, Germany *These authors contributed equally to this work Background: Optical coherence tomography (OCT) is an intravascular, high-resolution imaging technique that is used to characterize atherosclerotic plaques. However, the identification of macrophages as important markers of inflammation and plaque vulnerability remains difficult. Here, we investigate whether the uptake of very small iron oxide particles (VSOP) in macrophages, that cluster in phagolysosomes and allow high-quality magnetic resonance imaging (MRI) of atherosclerotic plaques, and uptake of ferumoxytol nanoparticles enhance detection of macrophages by OCT.Materials and methods: RAW 264.7 macrophage cells were incubated with VSOP (1 and 2 mM Fe) that have been clinically tested and ferumoxytol (8.9 mM Fe) that is approved for iron deficiency treatment and currently investigated as an MRI contrast agent. The light scattering of control macrophages, nanoparticle-labeled macrophages (2,000,000 in 500 µL) and nanoparticle suspensions was measured in synchronous wavelength scan mode using a fluorescence spectrophotometer. For OCT analyses, pellets of 8,000,000 non-labeled, VSOP-labeled and ferumoxytol-labeled RAW 264.7 macrophages were imaged and analyzed on an OPTIS™ OCT imaging system.Results: Incubation with 1 and 2 mM VSOP resulted in uptake of 7.1±1.5 and 12±1.5 pg Fe per cell, which increased the backscattering of the macrophages in spectrophotometry 2.5- and 3.6-fold, whereas incubation with 8.9 mM Fe ferumoxytol resulted in uptake of 6.6±2 pg Fe per cell, which increased the backscattering 1.5-fold at 700 nm. In contrast, backscattering of non-clustered nanoparticles in suspension was negligible. Accordingly, OCT imaging could visualize significantly increased backscattering and signal attenuation of nanoparticle-labeled macrophages in comparison with controls.Conclusion: We conclude that VSOP and, to a lesser extent, ferumoxytol increase light scattering and attenuation when taken up by macrophages and can serve as a multimodal imaging probe for MRI and OCT to improve macrophage detection in atherosclerotic plaques by OCT in the future. Keywords: intravascular, inflammation, vulnerability, multimodal imaging, optical coherence tomography, magnetic resonance imagin

    Virtual Equipment for benchmarking Predictive Maintenance algorithms

    No full text
    This paper presents a comparison of three algorithm types (Bayesian Networks, Random Forest and Linear Regression) for Predictive Maintenance on an implanter system in semiconductor manufacturing. The comparison studies are executed using a Virtual Equipment which serves as a testing environment for prediction algorithms prior to their implementation in a semiconductor manufacturing plant (fab). The Virtual Equipment uses input data that is based on historical fab data collected during multiple filament failure cycles. In an automated study, the input data is altered systematically, e.g. by adding noise, drift or maintenance effects, and used for predictions utilizing the created Predictive Maintenance models. The resulting predictions are compared to the actual time-to-failure and to each other. Multiple analysis methods are applied, resulting in a performance table

    Partial Restoration of Activity to Lactobacillus casei Thymidylate Synthase following Inactivation by Domain Deletion

    No full text
    Thymidylate synthase (TS) from Lactobacillus casei has a 50 amino acid insert (residues 90-1 39) in the small domain that is found in only one other TS. A deletion mutant was constructed which lacked the entire insert, thereby reducing the small domain to the size found in Escherichia coli TS. This mutant did not catalyze the formation of dTMP. From the crystal structure of L. casei TS, we surmised that the loss of activity might have resulted from the exposure of residues of helices C and D, which were previously buried by the insert. To restore the local structure of helices C and D in the deletion mutants, we replaced several residues in this region by the corresponding residues found in E. coli TS. The mutant whose sequence most closely resembled that of E . coli TS carried six mutations and possessed partially restored TS activity. The mutant which had all those mutations except F87D did not catalyze any dTMP formation. The crucial role of F87D was proven in a deletion mutant which had only this change and showed greatly increased activity. All of the mutants catalyzed the debromination of BrdUMP in the absence of cofactor about as well as wild type TS. The kinetic parameters for dTMP formation of the active mutants show that the deletion has its major effect on kcat and binding of cofactor CHzHdfolate, with less effect on binding of the substrate dUMP. Removal of residues 90-139 is believed to disorder helices C and D, which in turn decreases cofactor binding and catalysis
    corecore