5 research outputs found
Plasticity of Lgr5-Negative Cancer Cells Drives Metastasis in Colorectal Cancer
Colorectal cancer stem cells (CSCs) express Lgr5 and display extensive stem cell-like multipotency and self-renewal and are thought to seed metastatic disease. Here, we used a mouse model of colorectal cancer (CRC) and human tumor xenografts to investigate the cell of origin of metastases. We found that most disseminated CRC cells in circulation were Lgr5- and formed distant metastases in which Lgr5+ CSCs appeared. This p
Proteomic and Functional Studies Reveal Detyrosinated Tubulin as Treatment Target in Sarcomere Mutation-Induced Hypertrophic Cardiomyopathy
BACKGROUND: Hypertrophic cardiomyopathy (HCM) is the most common genetic heart disease. While ≈50% of patients with HCM carry a sarcomere gene mutation (sarcomere mutation-positive, HCMSMP), the genetic background is unknown in the other half of the patients (sarcomere mutation-negative, HCMSMN). Genotype-specific differences have been reported in cardiac function. Moreover, HCMSMN patients have later disease onset and a better prognosis than HCMSMP patients. To define if genotype-specific derailments at the protein level may explain the heterogeneity in disease development, we performed a proteomic analysis in cardiac tissue from a clinically well-phenotyped HCM patient group. METHODS: A proteomics screen was performed in cardiac tissue from 39 HCMSMP patients, 11HCMSMN patients, and 8 nonfailing controls. Patients with HCM had obstructive cardiomyopathy with left ventricular outflow tract obstruction and diastolic dysfunction. A novel MYBPC32373insG mouse model was used to confirm functional relevance of our proteomic findings. RESULTS: In all HCM patient samples, we found lower levels of metabolic pathway proteins and higher levels of extracellular matrix proteins. Levels of t
Taxanes trigger cancer cell killing in vivo by inducing non-canonical T cell cytotoxicity
Although treatment with taxanes does not always lead to clinical benefit, all patients are at risk of their detrimental side effects such as peripheral neuropathy. Understanding the in vivo mode of action of taxanes can help design improved treatment regimens. Here, we demonstrate that in vivo, taxanes directly trigger T cells to selectively kill cancer cells in a non-canonical, T cell receptor-independent manner. Mechanistically, taxanes induce T cells to release cytotoxic extracellular vesicles, which lead to apoptosis specifically in tumor cells while leaving healthy epithelial cells intact. We exploit these findings to develop an effective therapeutic approach, based on transfer of T cells pre-treated with taxanes ex vivo, thereby avoiding toxicity of systemic treatment. Our study reveals a different in vivo mode of action of one of the most commonly used chemotherapies, and opens avenues to harness T cell-dependent anti-tumor effects of taxanes while avoiding systemic toxicity
DPHL: A DIA Pan-human Protein Mass Spectrometry Library for Robust Biomarker Discovery
To address the increasing need for detecting and validating protein biomarkers in clinical specimens, mass spectrometry (MS)-based targeted proteomic techniques, including the selected reaction monitoring (SRM), parallel reaction monitoring (PRM), and massively parallel data-independent acquisition (DIA), have been developed. For optimal performance, they require the fragment ion spectra of targeted peptides as prior knowledge. In this report, we describe a MS pipeline and spectral resource to support targeted proteomics studies for human tissue samples. To build the spectral resource, we integrated common open-source MS computational tools to assemble a freely accessible computational workflow based on Docker. We then applied the workflow to generate DPHL, a comprehensive DIA pan-human library, from 1096 data-dependent acquisition (DDA) MS raw files for 16 types of cancer samples. This extensive spectral resource was then applied to a proteomic study of 17 prostate cancer (PCa) patients. Thereafter, PRM validation was applied to a larger study of 57 PCa patients and the differential expression of three proteins in prostate tumor was validated. As a second application, the DPHL spectral resource was applied to a study consisting of plasma samples from 19 diffuse large B cell lymphoma (DLBCL) patients and 18 healthy control subjects. Differentially expressed proteins between DLBCL patients and healthy control subjects were detected by DIA-MS and confirmed by PRM. These data demonstrate that the DPHL supports DIA and PRM MS pipelines for robust protein biomarker discovery. DPHL is freely accessible at https://www.iprox.org/page/project.html?id=IPX0001400000
Combined Expression of Plasma Thrombospondin-2 and CA19-9 for Diagnosis of Pancreatic Cancer and Distal Cholangiocarcinoma: A Proteome Approach
Background: Minimally invasive diagnostic biomarkers for patients with pancreatic ductal adenocarcinoma (PDAC) and distal cholangiocarcinoma (dCCA) are warranted to facilitate accurate diagnosis. This study identified diagnostic plasma proteins based on proteomics of tumor secretome. Materials and Methods: Secretome of tumor and normal tissue was collected after resection of PDAC and dCCA. Differentially expressed proteins were measured by mass spectrometry. Selected candidate biomarkers and carbohydrate antigen 19-9 (CA19-9) were validated by enzyme-linked immunosorbent assay in plasma from patients with PDAC (n = 82), dCCA (n = 29), benign disease (BD; n = 30), and healthy donors (HDs; n = 50). Areas under the curve (AUCs) of receiver operator characteristic curves were calculated to determine the discriminative power. Results: In tumor secretome, 696 discriminatory proteins were identified, including 21 candidate biomarkers. Thrombospondin-2 (THBS2) emerged as promising biomarker. Abundance of THBS2 in plasma from patients with cancer was significantly higher compared to HDs (p <.001, AUC = 0.844). Combined expression of THBS2 and CA19-9 yielded the optimal discriminatory capacity (AUC = 0.952), similarly for early- and late-stage disease (AUC = 0.971 and AUC = 0.911). Remarkably, this combination demonstrated a power similar to CA19-9 to discriminate cancer from BD (AUC = 0.764), and THBS2 provided an additive value in patients with high expression levels of bilirubin. Conclusion: Our proteome approach identified a promising set of candidate biomarkers. The combined plasma expression of THBS2/CA19-9 is able to accurately distinguish patients with PDAC or dCCA from HD and BD. Implications for Practice: The combined plasma expression of thrombospondin-2 and carbohydrate antigen 19-9 is able to accurately diagnose patients with pancreatic cancer and distal cholangiocarcinoma. This will facilitate minimally invasive diagnosis for these patients by distinguishing them from healthy individuals and benign diseases