107 research outputs found

    Topological Line Defects around Graphene Nanopores for DNA Sequencing

    Full text link
    Topological line defects in graphene represent an ideal way to produce highly controlled structures with reduced dimensionality that can be used in electronic devices. In this work we propose using extended line defects in graphene to improve nucleobase selectivity in nanopore-based DNA sequencing devices. We use a combination of QM/MM and non-equilibrium Green's functions methods to investigate the conductance modulation, fully accounting for solvent effects. By sampling over a large number of different orientations generated from molecular dynamics simulations, we theoretically demonstrate that distinguishing between the four nucleobases using line defects in a graphene-based electronic device appears possible. The changes in conductance are associated with transport across specific molecular states near the Fermi level and their coupling to the pore. Through the application of a specifically tuned gate voltage, such a device would be able to discriminate the four types of nucleobases more reliably than that of graphene sensors without topological line defects.Comment: 6 figures and 6 page

    Temperature dependence of viscosity, relaxation times (T1, T2) and simulated contrast for potential perfusates in post-mortem MR angiography (PMMRA).

    Get PDF
    Developments in post-mortem imaging increasingly focus on addressing recognised diagnostic weaknesses, especially with regard to suspected natural deaths. Post-mortem MR angiography (PMMRA) may offer additional diagnostic information to help address such weaknesses, specifically in the context of sudden cardiac death. Complete filling of the coronary arteries and acceptable contrast with surrounding tissue are essential for a successful approach to PMMRA. In this work, the suitability of different liquids for inclusion in a targeted PMMRA protocol was evaluated. Factors influencing cooling of paraffinum liquidum + Angiofil® (6 %) in cadavers during routine multiphase post-mortem CT angiography were investigated. The temperature dependence of dynamic viscosity (8-20 °C), longitudinal (T1) and transverse (T2) relaxation (1-23 °C) of the proposed liquids was quadratically modelled. The relaxation behaviour of these liquids and MR scan parameters were further investigated by simulation of a radiofrequency (RF)-spoiled gradient echo (GRE) sequence to estimate potentially achievable contrast between liquids and post-mortem tissue at different temperatures across a forensically relevant temperature range. Analysis of the established models and simulations indicated that based on dynamic viscosity (27-33 mPa · s), short T1 relaxation times (155-207 ms) and a minimal temperature dependence over the investigated range of these parameters, paraffin oil and a solution of paraffin oil + Angiofil® (6 %) would be most suitable for post-mortem reperfusion and examination in MRI

    Transverse Electronic Transport through DNA Nucleotides with Functionalized Graphene Electrodes

    Full text link
    Graphene nanogaps and nanopores show potential for the purpose of electrical DNA sequencing, in particular because single-base resolution appears to be readily achievable. Here, we evaluated from first principles the advantages of a nanogap setup with functionalized graphene edges. To this end, we employed density functional theory and the non-equilibrium Green's function method to investigate the transverse conductance properties of the four nucleotides occurring in DNA when located between the opposing functionalized graphene electrodes. In particular, we determined the electrical tunneling current variation as a function of the applied bias and the associated differential conductance at a voltage which appears suitable to distinguish between the four nucleotides. Intriguingly, we observe for one of the nucleotides a negative differential resistance effect.Comment: 19 pages, 7 figure

    Механизмы формоизменения клиновидных двойников в локально-деформируемых ионноимплантированных монокристаллах висмута

    Get PDF
    Изучено влияние имплантации ионов бора, азота, углерода, аргона, циркония и тантала энергией 25 кэВ, дозой 10 17 ион/см 2 на закономерности искривления, ветвления и зарождения вдали от отпечатка индентора клиновидных двойников в монокристаллах висмута. Рассмотрены механизмы формоизменения клиновидных двойниковых ламелей. Предложен механизм зарождения дислокационных стопоров и источников двойникующих дислокаций в ходе ионной имплантации кристаллов. Рассмотрено взаимодействие нанодвойников, сформировавшихся при ионной имплантации, с двойниками, образующимися при локальном деформировании поверхности.The influence of implantation of boron, nitrogen, carbon, argon, zirconium and tantalum ions of energy of 25 keV, dose of 10 17 ion/cm 2 on the mechanism of distortion, branching and origination far from indentation of wedge-shaped twins in monocrystals of bismuth have been studied The mechanisms of lamella wedge-shaped twin deformation are considered. A mechanism is proposed for origination of dislocation stop and the sources of twinning dislocation in the process of crystal ion implantation. The interaction of nano-twins formed at ion implantation with the twins formed at local deformation of the surface is considered

    Volatility Patterns of CDs, Bond and Stock Markets Before and During the Financial Crisis: Evidence from Major Financial Institutions

    Full text link
    This study is motivated by the development of credit-related instruments and signals of stock price movements of large banks during the recent financial crisis. What is common to most of the empirical studies in this field is that they concentrate on modeling the conditional mean. However, financial time series exhibit certain stylized features such as volatility clustering. But very few studies dealing with credit default swaps account for the characteristics of the variances. Our aim is to address this issue and to gain insights on the volatility patterns of CDS spreads, bond yield spreads and stock prices. A generalized autoregressive conditional heteroscedasticity (GARCH) model is applied to the data of four large US banks over the period ranging from January 01, 2006, to December 31, 2009. More specifically, a multivariate GARCH approach fits the data very well and also accounts for the dependency structure of the variables under consideration. With the commonly known shortcomings of credit ratings, the demand for market-based indicators has risen as they can help to assess the creditworthiness of debtors more reliably. The obtained findings suggest that volatility takes a significant higher level in times of crisis. This is particularly evident in the variances of stock returns and CDS spread changes. Furthermore, correlations and covariances are time-varying and also increased in absolute values after the outbreak of the crisis, indicating stronger dependency among the examined variables. Specific events which have a huge impact on the financial markets as a whole (e.g. the collapse of Lehman Brothers) are also visible in the (co)variances and correlations as strong movements in the respective series

    30 years of collaboration

    Get PDF
    We highlight some of the most important cornerstones of the long standing and very fruitful collaboration of the Austrian Diophantine Number Theory research group and the Number Theory and Cryptography School of Debrecen. However, we do not plan to be complete in any sense but give some interesting data and selected results that we find particularly nice. At the end we focus on two topics in more details, namely a problem that origins from a conjecture of Rényi and Erdős (on the number of terms of the square of a polynomial) and another one that origins from a question of Zelinsky (on the unit sum number problem). This paper evolved from a plenary invited talk that the authors gaveat the Joint Austrian-Hungarian Mathematical Conference 2015, August 25-27, 2015 in Győr (Hungary)
    corecore