95 research outputs found
Search for Two-Neutrino Double Electron Capture of Xe with XENON100
Two-neutrino double electron capture is a rare nuclear decay where two
electrons are simultaneously captured from the atomic shell. For Xe
this process has not yet been observed and its detection would provide a new
reference for nuclear matrix element calculations. We have conducted a search
for two-neutrino double electron capture from the K-shell of Xe using
7636 kgd of data from the XENON100 dark matter detector. Using a
Bayesian analysis we observed no significant excess above background, leading
to a lower 90 % credibility limit on the half-life
yr. We also evaluated the sensitivity of the XENON1T experiment, which is
currently being commissioned, and find a sensitivity of
yr after an exposure of 2 tyr.Comment: 6 pages, 4 figure
Removing krypton from xenon by cryogenic distillation to the ppq level
The XENON1T experiment aims for the direct detection of dark matter in a
cryostat filled with 3.3 tons of liquid xenon. In order to achieve the desired
sensitivity, the background induced by radioactive decays inside the detector
has to be sufficiently low. One major contributor is the -emitter
Kr which is an intrinsic contamination of the xenon. For the XENON1T
experiment a concentration of natural krypton in xenon Kr/Xe < 200
ppq (parts per quadrillion, 1 ppq = 10 mol/mol) is required. In this
work, the design of a novel cryogenic distillation column using the common
McCabe-Thiele approach is described. The system demonstrated a krypton
reduction factor of 6.410 with thermodynamic stability at process
speeds above 3 kg/h. The resulting concentration of Kr/Xe < 26 ppq
is the lowest ever achieved, almost one order of magnitude below the
requirements for XENON1T and even sufficient for future dark matter experiments
using liquid xenon, such as XENONnT and DARWIN
Search for Two-Neutrino Double Electron Capture of <sup>124</sup>Xe with XENON100
Two-neutrino double electron capture is a rare nuclear decay where two electrons are simultaneously captured from the atomic shell. For Xe this process has not yet been observed and its detection would provide a new reference for nuclear matrix element calculations. We have conducted a search for two-neutrino double electron capture from the K-shell of Xe using 7636 kgd of data from the XENON100 dark matter detector. Using a Bayesian analysis we observed no significant excess above background, leading to a lower 90 % credibility limit on the half-life yr. We also evaluated the sensitivity of the XENON1T experiment, which is currently being commissioned, and find a sensitivity of yr after an exposure of 2 tyr
Physics reach of the XENON1T dark matter experiment
The XENON1T experiment is currently in the commissioning phase at theLaboratori Nazionali del Gran Sasso, Italy. In this article we study theexperiment's expected sensitivity to the spin-independent WIMP-nucleoninteraction cross section, based on Monte Carlo predictions of the electronicand nuclear recoil backgrounds. The total electronic recoil background in tonne fiducial volume and (,) keV electronic recoil equivalent energy region, before applying anyselection to discriminate between electronic and nuclear recoils, is (, mainly due to thedecay of daughters inside the xenon target. The nuclear recoilbackground in the corresponding nuclear recoil equivalent energy region (,) keV, is composed of ( fromradiogenic neutrons, ( fromcoherent scattering of neutrinos, and less than (from muon-induced neutrons. The sensitivity of XENON1T is calculated with the Profile Likelihood Ratiomethod, after converting the deposited energy of electronic and nuclear recoilsinto the scintillation and ionization signals seen in the detector. We takeinto account the systematic uncertainties on the photon and electron emissionmodel, and on the estimation of the backgrounds, treated as nuisanceparameters. The main contribution comes from the relative scintillationefficiency , which affects both the signal from WIMPsand the nuclear recoil backgrounds. After a y measurement in t fiducialvolume, the sensitivity reaches a minimum cross section of cm at m= GeV/
Online Rn removal by cryogenic distillation in the XENON100 experiment
We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column was integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant ²²²Rn background originating from radon emanation. After inserting an auxiliary ²²²Rn emanation source in the gas loop, we determined a radon reduction factor of R>27 (95% C.L.) for the distillation column by monitoring the ²²²Rn activity concentration inside the XENON100 detector
Search for inelastic scattering of WIMP dark matter in XENON1T
We report the results of a search for the inelastic scattering of weakly interacting massive particles (WIMPs) in the XENON1T dark matter experiment. Scattering off 129Xe is the most sensitive probe of inelastic WIMP interactions, with a signature of a 39.6 keV deexcitation photon detected simultaneously with the nuclear recoil. Using an exposure of 0.83 tonne-years, we find no evidence of inelastic WIMP scattering with a significance of more than 2σ. A profile-likelihood ratio analysis is used to set upper limits on the cross section of WIMP-nucleus interactions. We exclude new parameter space for WIMPs heavier than 100 GeV/c2, with the strongest upper limit of 3.3×10−39 cm2 for 130 GeV/c2 WIMPs at 90% confidence level
DARWIN: towards the ultimate dark matter detector
DARk matter WImp search with liquid xenoN (DARWIN) will be an experiment forthe direct detection of dark matter using a multi-ton liquid xenon timeprojection chamber at its core. Its primary goal will be to explore theexperimentally accessible parameter space for Weakly Interacting MassiveParticles (WIMPs) in a wide mass-range, until neutrino interactions with thetarget become an irreducible background. The prompt scintillation light and thecharge signals induced by particle interactions in the xenon will be observedby VUV sensitive, ultra-low background photosensors. Besides its excellentsensitivity to WIMPs above a mass of 5 GeV/c2, such a detector with its largemass, low-energy threshold and ultra-low background level will also besensitive to other rare interactions. It will search for solar axions, galacticaxion-like particles and the neutrinoless double-beta decay of 136-Xe, as wellas measure the low-energy solar neutrino flux with <1% precision, observecoherent neutrino-nucleus interactions, and detect galactic supernovae. Wepresent the concept of the DARWIN detector and discuss its physics reach, themain sources of backgrounds and the ongoing detector design and R&D efforts
A Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics
The nature of dark matter and properties of neutrinos are among the mostpressing issues in contemporary particle physics. The dual-phase xenontime-projection chamber is the leading technology to cover the availableparameter space for Weakly Interacting Massive Particles (WIMPs), whilefeaturing extensive sensitivity to many alternative dark matter candidates.These detectors can also study neutrinos through neutrinoless double-beta decayand through a variety of astrophysical sources. A next-generation xenon-baseddetector will therefore be a true multi-purpose observatory to significantlyadvance particle physics, nuclear physics, astrophysics, solar physics, andcosmology. This review article presents the science cases for such a detector.<br
- …