852 research outputs found
Simultaneous observation of high order multiple quantum coherences at ultralow magnetic fields
We present a method for the simultaneous observation of heteronuclear
multi-quantum coherences (up to the 3rd order), which give an additional degree
of freedom for ultralow magnetic field (ULF) MR experiments, where the chemical
shift is negligible. The nonequilibrium spin state is generated by Signal
Amplification By Reversible Exchange (SABRE) and detected at ULF with
SQUID-based NMR. We compare the results obtained by the heteronuclei Correlated
SpectroscopY (COSY) with a Flip Angle FOurier Series (FAFOS) method. COSY
allows a quantitative analysis of homo- and heteronuclei quantum coherences
First-principles investigation of Ag-Cu alloy surfaces in an oxidizing environment
In this paper we investigate by means of first-principles density functional
theory calculations the (111) surface of the Ag-Cu alloy under varying
conditions of pressure of the surrounding oxygen atmosphere and temperature.
This alloy has been recently proposed as a catalyst with improved selectivity
for ethylene epoxidation with respect to pure silver, the catalyst commonly
used in industrial applications. Here we show that the presence of oxygen leads
to copper segregation to the surface. Considering the surface free energy as a
function of the surface composition, we construct the convex hull to
investigate the stability of various surface structures. By including the
dependence of the free surface energy on the oxygen chemical potential, we are
able compute the phase diagram of the alloy as a function of temperature,
pressure and surface composition. We find that, at temperature and pressure
typically used in ethylene epoxidation, a number of structures can be present
on the surface of the alloy, including clean Ag(111), thin layers of copper
oxide and thick oxide-like structures. These results are consistent with, and
help explain, recent experimental results.Comment: 10 pages, 6 figure
Phenotypic and functional characterization of adult brain neuropoiesis
The modern concept of neurogenesis in the adult brain is predicated on the premise that multipotent glial cells give rise to new neurons throughout life. Although extensive evidence exists indicating that this is the case, the transition from glial to neuronal phenotype remains poorly understood. A unique monolayer cell-culture system was developed to induce, expose, and recapitulate the entire developmental series of events of subventricular zone (SVZ) neurogenesis. We show here, using immunophentoypic, ultrastructural, electrophysiological, and time-lapse analyses, that SVZ-derived glial fibrillary acidic protein(low)/A2B5(+)/nestin(+) candidate founder cells undergo metamorphosis to eventually generate large numbers of fully differentiated interneuron phenotypes. A model of postnatal neurogenesis is considered in light of known embryonic events and reveals a limited developmental potential of SVZ stem/progenitor cells, whereby ancestral cells in both embryonic and postnatal/adult settings give rise to glia and GABAergic interneurons
Scattering of rare-gas atoms at a metal surface: evidence of anticorrugation of the helium-atom potential-energy surface and the surface electron density
Recent measurements of the scattering of He and Ne atoms at Rh(110) suggest
that these two rare-gas atoms measure a qualitatively different surface
corrugation: While Ne atom scattering seemingly reflects the electron-density
undulation of the substrate surface, the scattering potential of He atoms
appears to be anticorrugated. An understanding of this perplexing result is
lacking. In this paper we present density functional theory calculations of the
interaction potentials of He and Ne with Rh(110). We find that, and explain
why, the nature of the interaction of the two probe particles is qualitatively
different, which implies that the topographies of their scattering potentials
are indeed anticorrugated.Comment: RevTeX, 4 pages, 10 figure
Kinetic hindrance during the initial oxidation of Pd(100) at ambient pressures
The oxidation of the Pd(100) surface at oxygen pressures in the 10^-6 to 10^3
mbar range and temperatures up to 1000 K has been studied in-situ by surface
x-ray diffraction (SXRD). The results provide direct structural information on
the phases present in the surface region and on the kinetics of the oxide
formation. Depending on the (T,p) environmental conditions we either observe a
thin sqrt(5) x sqrt(5) R27 surface oxide or the growth of a rough, poorly
ordered bulk oxide film of PdO predominantly with (001) orientation. By either
comparison to the surface phase diagram from first-principles atomistic
thermodynamics or by explicit time-resolved measurements we identify a strong
kinetic hindrance to the bulk oxide formation even at temperatures as high as
675 K.Comment: 4 pages including 4 figures, Related publications can be found at
http://www.fhi-berlin.mpg.de/th/paper.htm
Model for nucleation in GaAs homoepitaxy derived from first principles
The initial steps of MBE growth of GaAs on beta 2-reconstructed GaAs(001) are
investigated by performing total energy and electronic structure calculations
using density functional theory and a repeated slab model of the surface. We
study the interaction and clustering of adsorbed Ga atoms and the adsorption of
As_2 molecules onto Ga atom clusters adsorbed on the surface. The stable nuclei
consist of bound pairs of Ga adatoms, which originate either from dimerization
or from an indirect interaction mediated through the substrate reconstruction.
As_2 adsorption is found to be strongly exothermic on sites with a square array
of four Ga dangling bonds. Comparing two scenarios where the first As_2 gets
incorporated in the incomplete surface layer, or alternatively in a new added
layer, we find the first scenario to be preferable. In summary, the
calculations suggest that nucleation of a new atomic layer is most likely on
top of those surface regions where a partial filling of trenches in the surface
has occurred before.Comment: 8 pages, 14 figures, Submitted to Phys. Rev. B (December 15, 1998).
Other related publications can be found at
http://www.fhi-berlin.mpg.de/th/paper.htm
Anisotropy of Growth of the Close-Packed Surfaces of Silver
The growth morphology of clean silver exhibits a profound anisotropy: The
growing surface of Ag(111) is typically very rough while that of Ag(100) is
smooth and flat. This serious and important difference is unexpected, not
understood, and hitherto not observed for any other metal. Using density
functional theory calculations of self-diffusion on flat and stepped Ag(100) we
find, for example, that at flat regions a hopping mechanism is favored, while
across step edges diffusion proceeds by an exchange process. The calculated
microscopic parameters explain the experimentally reported growth properties.Comment: RevTeX, 4 pages, 3 figures in uufiles form, to appear in Phys. Rev.
Let
The influence of surface stress on the equilibrium shape of strained quantum dots
The equilibrium shapes of InAs quantum dots (i.e., dislocation-free, strained
islands with sizes >= 10,000 atoms) grown on a GaAs (001) substrate are studied
using a hybrid approach which combines density functional theory (DFT)
calculations of microscopic parameters, surface energies, and surface stresses
with elasticity theory for the long-range strain fields and strain relaxations.
In particular we report DFT calculations of the surface stresses and analyze
the influence of the strain on the surface energies of the various facets of
the quantum dot. The surface stresses have been neglected in previous studies.
Furthermore, the influence of edge energies on the island shapes is briefly
discussed. From the knowledge of the equilibrium shape of these islands, we
address the question whether experimentally observed quantum dots correspond to
thermal equilibrium structures or if they are a result of the growth kinetics.Comment: 7 pages, 8 figures, submitted to Phys. Rev. B (February 2, 1998).
Other related publications can be found at
http://www.rz-berlin.mpg.de/th/paper.htm
Human resources for health and burden of disease: an econometric approach
<p>Abstract</p> <p>Background</p> <p>The effect of health workers on health has been proven to be important for various health outcomes (e.g. mortality, coverage of immunisation or skilled birth attendants). The study aim of this paper is to assess the relationship between health workers and disability-adjusted life years (DALYs), which represents a much broader concept of health outcome, including not only mortality but also morbidity.</p> <p>Methods</p> <p>Cross-country multiple regression analyses were undertaken, with DALYs and DALYs disaggregated according to the three different groups of diseases as the dependent variable. Aggregate health workers and disaggregate physicians, nurses, and midwives were included as independent variables, as well as a variable accounting for the skill mix of professionals. The analysis also considers controlling for the effects of income, income distribution, percentage of rural population with access to improved water source, and health expenditure.</p> <p>Results</p> <p>This study presents evidence of a statistically negative relationship between the density of health workers (especially physicians) and the DALYs. An increase of one unit in the density of health workers per 1000 will decrease, on average, the total burden of disease between 1% and 3%. However, in line with previous findings in the literature, the density of nurses and midwives could not be said to be statistically associated to DALYs.</p> <p>Conclusions</p> <p>If countries increase their health worker density, they will be able to reduce significantly their burden of disease, especially the burden associated to communicable diseases. This study represents supporting evidence of the importance of health workers for health.</p
Near-Infrared Photometry and Radio Continuum Study of the Massive Star Forming Regions IRAS 21413+5442 and IRAS 21407+5441
IRAS 21413+5442 and IRAS 21407+5441 are two massive star forming regions of
high luminosity, likely associated with each other. Near-infrared photometry on
these two IRAS sources was performed at UKIRT using the UFTI under excellent
seeing conditions yielding an angular resolution of 0.5 arcsec. Our
results reveal details of stellar content to a completeness limit (90%) of J =
18.5, H = 18.0, and K = 17.5 mag in the two regions. In IRAS 21413+5442, we
identify a late O type star, having large (H-K) color, to be near the centre of
the CO jets observed by earlier authors. The UKIRT images reveal in IRAS
21407+5441, a faint but clear compact HII region around a central high -
intermediate mass star cluster. We have detected a number of sources with large
(H-K) color which are not detected in J band. We also present the GMRT radio
continuum map at 1.28 GHz covering the entire region surrounding the two star
forming clouds. The radio continuum fluxes are used to estimate the properties
of HII regions which seem to support our near-IR photometric results. Based on
our radio continuum map and the archival MSX 8.2 m image, we show that the
two IRAS sources likely belong to the same parent molecular cloud and
conjecture that a high mass star of large IR colors, present in between the two
sources, might have triggered star formation in this region. However one can
not rule out the alternative possibility that Star A could be a nearby
foreground star.Comment: 12 pages, 7 figures, accepted for publication in MNRA
- …