224 research outputs found
Obesityāinduced diabetes and lower urinary tract fibrosis promote urinary voiding dysfunction in a mouse model
BACKGROUND Progressive agingā and inflammationāassociated fibrosis effectively remodels the extracellular matrix (ECM) to increase prostate tissue stiffness and reduce urethral flexibility, resulting in urinary flow obstruction and lower urinary tract symptoms (LUTS). In the current study, we sought to test whether senescenceāaccelerated mouse prone (SAMP)6 mice, which were reported to develop prostatic fibrosis, would also develop LUTS, and whether these symptoms would be exacerbated by dietāinduced obesity and concurrent Type 2 Diabetes Mellitus (T2DM). METHODS To accomplish this, SAMP6 and AKR/J background strain mice were fed regular mouse chow, low fat diet chow, or high fat diet chow for 8 months, then subjected to glucose tolerance tests, assessed for plasma insulin levels, evaluated for urinary voiding function, and assessed for lower urinary tract fibrosis. RESULTS The results of these studies show that SAMP6 mice and AKR/J background strain mice develop dietāinduced obesity and T2DM concurrent with urinary voiding dysfunction. Moreover, urinary voiding dysfunction was more severe in SAMP6 than AKR/J mice and was associated with pronounced prostatic and urethral tissue fibrosis. CONCLUSIONS Taken together, these studies suggest that obesity, T2DM, lower urinary tract fibrosis, and urinary voiding dysfunction are inextricably and biologically linked. Prostate 73: 1123ā1133, 2013. Ā© 2013 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98367/1/22662_ftp.pd
Mast Cell Chymase/Mcpt4 Suppresses the Host Immune Response to Plasmodium yoelii, Limits Malaria-Associated Disruption of Intestinal Barrier Integrity and Reduces Parasite Transmission to Anopheles stephensi
An increase in mast cells (MCs) and MCs mediators has been observed in malaria-associated bacteremia, however, the role of these granulocytes in malarial immunity is poorly understood. Herein, we studied the role of mouse MC protease (Mcpt) 4, an ortholog of human MC chymase, in malaria-induced bacteremia using Mcpt4 knockout (Mcpt4(-/-)) mice and Mcpt4(+/+) C57BL/6J controls, and the non-lethal mouse parasite Plasmodium yoelii yoelii 17XNL. Significantly lower parasitemia was observed in Mcpt4(-/-) mice compared with Mcpt4(+/+) controls by day 10 post infection (PI). Although bacterial 16S DNA levels in blood were not different between groups, increased intestinal permeability to FITC-dextran and altered ileal adherens junction E-cadherin were observed in Mcpt4(-/-) mice. Relative to infected Mcpt4(+/+) mice, ileal MC accumulation in Mcpt4(-/-) mice occurred two days earlier and IgE levels were higher by days 8-10 PI. Increased levels of circulating myeloperoxidase were observed at 6 and 10 days PI in Mcpt4(+/+) but not Mcpt4(-/-) mice, affirming a role for neutrophil activation that was not predictive of parasitemia or bacterial 16S copies in blood. In contrast, early increased plasma levels of TNF-alpha, IL-12p40 and IL-3 were observed in Mcpt4(-/-) mice, while levels of IL-2, IL-10 and MIP1 beta (CCL4) were increased over the same period in Mcpt4(+/+) mice, suggesting that the host response to infection was skewed toward a type-1 immune response in Mcpt4(-/-) mice and type-2 response in Mcpt4(+/+) mice. Spearman analysis revealed an early (day 4 PI) correlation of Mcpt4(-/-) parasitemia with TNF-alpha and IFN-gamma, inflammatory cytokines known for their roles in pathogen clearance, a pattern that was observed in Mcpt4(+/+) mice much later (day 10 PI). Transmission success of P. y. yoelii 17XNL to Anopheles stephensi was significantly higher from infected Mcpt4(-/-) mice compared with infected Mcpt4(+/+) mice, suggesting that Mcpt4 also impacts transmissibility of sexual stage parasites. Together, these results suggest that early MCs activation and release of Mcpt4 suppresses the host immune response to P. y. yoelii 17XNL, perhaps via degradation of TNF-alpha and promotion of a type-2 immune response that concordantly protects epithelial barrier integrity, while limiting the systemic response to bacteremia and parasite transmissibility
Integrated Analysis of Clinical and Microbiome Risk Factors Associated with the Development of Oral Candidiasis during Cancer Chemotherapy.
Oral candidiasis is a common side effect of cancer chemotherapy. To better understand predisposing factors, we followed forty-five subjects who received 5-fluorouracil- or doxorubicin-based treatment, during one chemotherapy cycle. Subjects were evaluated at baseline, prior to the first infusion, and at three additional visits within a two-week window. We assessed the demographic, medical and oral health parameters, neutrophil surveillance, and characterized the salivary bacteriome and mycobiome communities through amplicon high throughput sequencing. Twenty percent of all subjects developed oral candidiasis. Using multivariate statistics, we identified smoking, amount of dental plaque, low bacteriome and mycobiome alpha-diversity, and the proportions of specific bacterial and fungal taxa as baseline predictors of oral candidiasis development during the treatment cycle. All subjects who developed oral candidiasis had baseline microbiome communities dominated by Candida and enriched in aciduric bacteria. Longitudinally, oral candidiasis was associated with a decrease in salivary flow prior to lesion development, and occurred simultaneously or before oral mucositis. Candidiasis was also longitudinally associated with a decrease in peripheral neutrophils but increased the neutrophil killing capacity of Candida albicans. Oral candidiasis was not found to be associated with mycobiome structure shifts during the cycle but was the result of an increase in Candida load, with C. albicans and Candida dubliniensis being the most abundant species comprising the salivary mycobiome of the affected subjects. In conclusion, we identified a set of clinical and microbiome baseline factors associated with susceptibility to oral candidiasis, which might be useful tools in identifying at risk individuals, prior to chemotherapy
Predicting Efavirenz Concentrations in the Brain Tissue of HIV-Infected Individuals and Exploring their Relationship to Neurocognitive Impairment
Sparse data exist on the penetration of antiretrovirals into brain tissue. In this work, we present a framework to use efavirenz (EFV) pharmacokinetic (PK) data in plasma, cerebrospinal fluid (CSF), and brain tissue of eight rhesus macaques to predict brain tissue concentrations in HIV-infected individuals. We then perform exposure-response analysis with the model-predicted EFV area under the concentration-time curve (AUC) and neurocognitive scores collected from a group of 24 HIV-infected participants. Adult rhesus macaques were dosed daily with 200 mg EFV (as part of a four-drug regimen) for 10 days. Plasma was collected at 8 time points over 10 days and at necropsy, whereas CSF and brain tissue were collected at necropsy. In the clinical study, data were obtained from one paired plasma and CSF sample of participants prescribed EFV, and neuropsychological test evaluations were administered across 15 domains. PK modeling was performed using ADAPT version 5.0 Biomedical Simulation Resource, Los Angeles, CA) with the iterative two-stage estimation method. An eight-compartment model best described EFV distribution across the plasma, CSF, and brain tissue of rhesus macaques and humans. Model-predicted median brain tissue concentrations in humans were 31 and 8,000 ng/mL, respectively. Model-predicted brain tissue AUC was highly correlated with plasma AUC (Ī³ = 0.99, P 0.05). This analysis provides an approach to estimate PK the brain tissue in order to perform PK/pharmacodynamic analyses at the target site. Ā© 2019 The Authors. Clinical and Translational Science published by Wiley Periodicals, Inc. on behalf of the American Society for Clinical Pharmacology and Therapeutics
Chemotherapy-induced oral mucositis is associated with detrimental bacterial dysbiosis.
BACKGROUND: Gastrointestinal mucosal injury (mucositis), commonly affecting the oral cavity, is a clinically significant yet incompletely understood complication of cancer chemotherapy. Although antineoplastic cytotoxicity constitutes the primary injury trigger, the interaction of oral microbial commensals with mucosal tissues could modify the response. It is not clear, however, whether chemotherapy and its associated treatments affect oral microbial communities disrupting the homeostatic balance between resident microorganisms and the adjacent mucosa and if such alterations are associated with mucositis. To gain knowledge on the pathophysiology of oral mucositis, 49 subjects receiving 5-fluorouracil (5-FU) or doxorubicin-based chemotherapy were evaluated longitudinally during one cycle, assessing clinical outcomes, bacterial and fungal oral microbiome changes, and epithelial transcriptome responses. As a control for microbiome stability, 30 non-cancer subjects were longitudinally assessed. Through complementary in vitro assays, we also evaluated the antibacterial potential of 5-FU on oral microorganisms and the interaction of commensals with oral epithelial tissues.
RESULTS: Oral mucositis severity was associated with 5-FU, increased salivary flow, and higher oral granulocyte counts. The oral bacteriome was disrupted during chemotherapy and while antibiotic and acid inhibitor intake contributed to these changes, bacteriome disruptions were also correlated with antineoplastics and independently and strongly associated with oral mucositis severity. Mucositis-associated bacteriome shifts included depletion of common health-associated commensals from the genera Streptococcus, Actinomyces, Gemella, Granulicatella, and Veillonella and enrichment of Gram-negative bacteria such as Fusobacterium nucleatum and Prevotella oris. Shifts could not be explained by a direct antibacterial effect of 5-FU, but rather resembled the inflammation-associated dysbiotic shifts seen in other oral conditions. Epithelial transcriptional responses during chemotherapy included upregulation of genes involved in innate immunity and apoptosis. Using a multilayer epithelial construct, we show mucositis-associated dysbiotic shifts may contribute to aggravate mucosal damage since the mucositis-depleted Streptococcus salivarius was tolerated as a commensal, while the mucositis-enriched F. nucleatum displayed pro-inflammatory and pro-apoptotic capacity.
CONCLUSIONS: Altogether, our work reveals that chemotherapy-induced oral mucositis is associated with bacterial dysbiosis and demonstrates the potential for dysbiotic shifts to aggravate antineoplastic-induced epithelial injury. These findings suggest that control of oral bacterial dysbiosis could represent a novel preventive approach to ameliorate oral mucositis
Deciphering the intracellular metabolism of Listeria monocytogenes by mutant screening and modelling
Background: The human pathogen Listeria monocytogenes resides and proliferates within the cytoplasm of epithelial cells. While the virulence factors essentially contributing to this step of the infection cycle are well characterized, the set of listerial genes contributing to intracellular replication remains to be defined on a genome-wide level. Results: A comprehensive library of L. monocytogenes strain EGD knockout mutants was constructed upon insertion-duplication mutagenesis, and 1491 mutants were tested for their phenotypes in rich medium and in a Caco-2 cell culture assay. Following sequencing of the plasmid insertion site, 141 different genes required for invasion of and replication in Caco-2 cells were identified. Ten in-frame deletion mutants were constructed that confirmed the data. The genes with known functions are mainly involved in cellular processes including transport, in the intermediary metabolism of sugars, nucleotides and lipids, and in information pathways such as regulatory functions. No function could be ascribed to 18 genes, and a counterpart of eight genes is missing in the apathogenic species L. innocua. Mice infection studies revealed the in vivo requirement of IspE (Lmo0190) involved in mevalonate synthesis, and of the novel ABC transporter Lmo0135-0137 associated with cysteine transport. Based on the data of this genome-scale screening, an extreme pathway and elementary mode analysis was applied that demonstrates the critical role of glycerol and purine metabolism, of fucose utilization, and of the synthesis of glutathione, aspartate semialdehyde, serine and branched chain amino acids during intracellular replication of L. monocytogenes. Conclusion: The combination of a genetic screening and a modelling approach revealed that a series of transporters help L. monocytogenes to overcome a putative lack of nutrients within cells, and that a high metabolic flexibility contributes to the intracellular replication of this pathogen
The magnitude of the snow-sourced reactive nitrogen flux to the boundary layer in the Uintah Basin
Reactive nitrogen (Nr = NO, NO2, HONO) and volatile organic carbon emissions from oil and gas extraction activities play a major role in wintertime ground-level ozone exceedance events of up to 140 ppb in the Uintah Basin in eastern Utah. Such events occur only when the ground is snow covered, due to the impacts of snow on the stability and depth of the boundary layer and ultraviolet actinic flux at the surface. Recycling of reactive nitrogen from the photolysis of snow nitrate has been observed in polar and midlatitude snow, but snow-sourced reactive nitrogen fluxes in mid-latitude regions have not yet been quantified in the field. Here we present vertical profiles of snow nitrate concentration and nitrogen isotopes (Ī“15N) collected during the Uintah Basin Winter Ozone Study 2014 (UBWOS 2014), along with observations of insoluble light-absorbing impurities, radiation equivalent mean ice grain radii, and snow density that determine snow optical properties. We use the snow optical properties and nitrate concentrations to calculate ultraviolet actinic flux in snow and the production of Nr from the photolysis of snow nitrate. The observed Ī“15N(NOā3) is used to constrain modeled fractional loss of snow nitrate in a snow chemistry column model, and thus the source of Nr to the overlying boundary layer. Snow-surface Ī“15N(NOā3) measurements range from ā5 to 10 ā° and suggest that the local nitrate burden in the Uintah Basin is dominated by primary emissions from anthropogenic sources, except during fresh snowfall events, where remote NOx sources from beyond the basin are dominant. Modeled daily averaged snow-sourced Nr fluxes range from 5.6 to 71 Ć 107 molec cmā2sā1 over the course of the field campaign, with a maximum noontime value of 3.1 Ć 109 molec cmā2sā1. The top-down emission estimate of primary, anthropogenic NOx in Uintah and Duchesne counties is at least 300 times higher than the estimated snow NOx emissions presented in this study. Our results suggest that snow-sourced reactive nitrogen fluxes are minor contributors to the Nr boundary layer budget in the highly polluted Uintah Basin boundary layer during winter 2014
PKCĪµ-CREB-Nrf2 signalling induces HO-1 in the vascular endothelium and enhances resistance to inflammation and apoptosis
Aims
Vascular injury leading to endothelial dysfunction is a characteristic feature of chronic renal disease, diabetes mellitus, and systemic inflammatory conditions, and predisposes to apoptosis and atherogenesis. Thus, endothelial dysfunction represents a potential therapeutic target for atherosclerosis prevention. The observation that activity of either protein kinase C epsilon (PKCĪµ) or haem oxygenase-1 (HO-1) enhances endothelial cell (EC) resistance to inflammation and apoptosis led us to test the hypothesis that HO-1 is a downstream target of PKCĪµ.
Methods and results
Expression of constitutively active PKCĪµ in human EC significantly increased HO-1 mRNA and protein, whereas conversely aortas or cardiac EC from PKCĪµ-deficient mice exhibited reduced HO-1 when compared with wild-type littermates. Angiotensin II activated PKCĪµ and induced HO-1 via a PKCĪµ-dependent pathway. PKCĪµ activation significantly attenuated TNFĪ±-induced intercellular adhesion molecule-1, and increased resistance to serum starvation-induced apoptosis. These responses were reversed by the HO antagonist zinc protoporphyrin IX. Phosphokinase antibody array analysis identified CREB1(Ser133) phosphorylation as a PKCĪµ signalling intermediary, and cAMP response element-binding protein 1 (CREB1) siRNA abrogated PKCĪµ-induced HO-1 up-regulation. Likewise, nuclear factor (erythroid-derived 2)-like 2 (Nrf2) was identified as a PKCĪµ target using nuclear translocation and DNA-binding assays, and Nrf2 siRNA prevented PKCĪµ-mediated HO-1 induction. Moreover, depletion of CREB1 inhibited PKCĪµ-induced Nrf2 DNA binding, suggestive of transcriptional co-operation between CREB1 and Nrf2.
Conclusions
PKCĪµ activity in the vascular endothelium regulates HO-1 via a pathway requiring CREB1 and Nrf2. Given the potent protective actions of HO-1, we propose that this mechanism is an important contributor to the emerging role of PKCĪµ in the maintenance of endothelial homeostasis and resistance to injury
- ā¦