162 research outputs found

    What do they know about me? Contents and Concerns of Online Behavioral Profiles

    Full text link
    Data aggregators collect large amount of information about individual users and create detailed online behavioral profiles of individuals. Behavioral profiles benefit users by improving products and services. However, they have also raised concerns regarding user privacy, transparency of collection practices and accuracy of data in the profiles. To improve transparency, some companies are allowing users to access their behavioral profiles. In this work, we investigated behavioral profiles of users by utilizing these access mechanisms. Using in-person interviews (n=8), we analyzed the data shown in the profiles, elicited user concerns, and estimated accuracy of profiles. We confirmed our interview findings via an online survey (n=100). To assess the claim of improving transparency, we compared data shown in profiles with the data that companies have about users. More than 70% of the participants expressed concerns about collection of sensitive data such as credit and health information, level of detail and how their data may be used. We found a large gap between the data shown in profiles and the data possessed by companies. A large number of profiles were inaccurate with as much as 80% inaccuracy. We discuss implications for public policy management.Comment: in Ashwini Rao, Florian Schaub, and Norman Sadeh What do they know about me? Contents and Concerns of Online Behavioral Profiles (2014) ASE BigData/SocialInformatics/PASSAT/BioMedCom Conferenc

    Mandatory Enforcement of Privacy Policies using Trusted Computing Principles

    Get PDF
    Modern communication systems and information technology create significant new threats to information privacy. In this paper, we discuss the need for proper privacy protection in cooperative intelligent transportation systems (cITS), one instance of such systems. We outline general principles for data protection and their legal basis and argue why pure legal protection is insufficient. Strong privacy-enhancing technologies need to be deployed in cITS to protect user data while it is generated and processed. As data minimization cannot always prevent the need for disclosing relevant personal information, we introduce the new concept of mandatory enforcement of privacy policies. This concept empowers users and data subjects to tightly couple their data with privacy policies and rely on the system to impose such policies onto any data processors. We also describe the PRECIOSA Privacy-enforcing Runtime Architecture that exemplifies our approach. Moreover, we show how an application can utilize this architecture by applying it to a pay as you drive (PAYD) car insurance scenario

    On the Potential of Generic Modeling for VANET Data Aggregation Protocols

    Get PDF
    In-network data aggregation is a promising communication mechanism to reduce bandwidth requirements of applications in vehicular ad-hoc networks (VANETs). Many aggregation schemes have been proposed, often with varying features. Most aggregation schemes are tailored to specific application scenarios and for specific aggregation operations. Comparative evaluation of different aggregation schemes is therefore difficult. An application centric view of aggregation does also not tap into the potential of cross application aggregation. Generic modeling may help to unlock this potential. We outline a generic modeling approach to enable improved comparability of aggregation schemes and facilitate joint optimization for different applications of aggregation schemes for VANETs. This work outlines the requirements and general concept of a generic modeling approach and identifies open challenges

    The Implications of the FCC’s Net Neutrality Repeal

    Get PDF
    In December 2017, the Federal Communications Commission (FCC) repealed US net neutrality regulation. The author discusses the meaning and importance of net neutrality, the FCC’s prior net neutrality rules and the implications of their repeal

    On credibility improvements for automotive navigation systems

    Get PDF
    Automotive navigation systems are becoming ubiquitous as driver assistance systems. Vendors continuously aim to enhance route guidance by adding new features to their systems. However, we found in an analysis of current navigation systems that many share interaction weaknesses, which can damage the system’s credibility. Such issues are most prevalent when selecting a route, deviating from the route intentionally, or when systems react to dynamic traffic warnings. In this work, we analyze the impact on credibility and propose improved interaction mechanisms to enhance perceived credibility of navigation systems. We improve route selection and the integration of dynamic traffic warnings by optimizing route comparability with relevance-based information display. Further, we show how bidirectional communication between driver and device can be enhanced to achieve a better mapping between device behavior and driver intention. We evaluated the proposed mechanisms in a comparative user study and present results that confirm positive effects on perceived credibility

    CANE: A Controlled Application Environment for privacy protection in ITS

    Get PDF
    Many of the applications proposed for intelligent transportation systems (ITS) need to process and communicate detailed personal identifiable information. Examples are detailed location traces or unique identifiers for authentication towards paid services. Existing applications often run as monolithic black boxes inside users’ cars. Hence, users cannot verify that applications behave as expected. We propose CANE, an application sandboxing approach that enhances user control over privacy properties while, at the same time, supporting common application requirements. CANE makes privacy-relevant application properties explicit and allows their analysis and enforcement during application runtime. We evaluate CANE using a common ITS use case and demonstrate feasibility with a proof-of-concept implementation

    Modeling In-Network Aggregation in VANETs

    Get PDF
    The multitude of applications envisioned for vehicular ad hoc networks requires efficient communication and dissemination mechanisms to prevent network congestion. In-network data aggregation promises to reduce bandwidth requirements and enable scalability in large vehicular networks. However, most existing aggregation schemes are tailored to specific applications and types of data. Proper comparative evaluation of different aggregation schemes is difficult. Yet, comparability is essential to properly measure accuracy, performance, and efficiency. We outline a modeling approach for VANET aggregation schemes to achieve objective comparability. Our modeling approach consists of three models, which provide different perspectives on an aggregation scheme. The generalized architecture model facilitates categorization of aggregation schemes. The aggregation information flow model supports analysis of where information is aggregated by a scheme. The aggregation state graph models how knowledge about the road network and its environment is represented by a scheme. Furthermore, it facilitates error estimation with respect to the ground truth. We apply each modeling approach to existing aggregation schemes from the literature and highlight strengths, as well as weaknesses, that can be used as a starting point for designing a more generic aggregation scheme
    corecore