4 research outputs found

    A selective and orally bioavailable VHL-recruiting PROTAC achieves SMARCA2 degradation in vivo

    Get PDF
    Targeted protein degradation offers an alternative modality to classical inhibition and holds the promise of addressing previously undruggable targets to provide novel therapeutic options for patients. Heterobifunctional molecules co-recruit a target protein and an E3 ligase, resulting in ubiquitylation and proteosome-dependent degradation of the target. In the clinic, the oral route of administration is the option of choice but has only been achieved so far by CRBN- recruiting bifunctional degrader molecules. We aimed to achieve orally bioavailable molecules that selectively degrade the BAF Chromatin Remodelling complex ATPase SMARCA2 over its closely related paralogue SMARCA4, to allow in vivo evaluation of the synthetic lethality concept of SMARCA2 dependency in SMARCA4-deficient cancers. Here we outline structure- and property-guided approaches that led to orally bioavailable VHL-recruiting degraders. Our tool compound, ACBI2, shows selective degradation of SMARCA2 over SMARCA4 in ex vivo human whole blood assays and in vivo efficacy in SMARCA4-deficient cancer models. This study demonstrates the feasibility for broadening the E3 ligase and physicochemical space that can be utilised for achieving oral efficacy with bifunctional molecules

    Symmetrical dental occlusion blocking – changes of body sway and weight distribution in healthy subjects across 4 age decades

    No full text
    Objectives: Symmetrical dental occlusion blocking is used in dentistry as a quick diagnostic tool to test for potential influences of the craniomandibular system on body sway and weight distribution. This study presents the changes of body sway and pressure distribution in healthy subjects, free of a temporomandibular dysfunction (TMD). Immediate effects between occlusal blocking and rest position on body sway and body weight distribution in general, as well as for both genders and for four age decades will be evaluated. Materials and methods: 725 (396f/329 m) subjects (neither subjective signs of TMD nor acute/chronic complaints in the musculoskeletal system) volunteered (21 to 60 years) while both genders were divided into four age groups according to decades. A pressure measuring platform was used. Body sway and weight distribution were recorded in two dental occlusion conditions (a) in rest position and (b) symmetrical blocking (bicuspid region) by cotton rolls. Results: Both, the frontal sway and the sagittal sway reduced by 0.67 mm (t(724) = − 3.9 (p <  0.001)) and by 0.33 mm (t(724) = − 3.4 (p <  0.001)). The relative pressure under the left forefoot increased by 0.33% (t(724) = 2.88 (p <  0.001)) and the relative pressure overall under the forefoot increased by 0.67% (t(724) = − 3.4 (p <  0.001)). Gender-specific, age-specific and BMI-specific reactions could not be identified. Conclusions: Subjects, free of any TMD and with no complaints of the musculoskeletal system, show small changes of the body sway and weight distribution when biting symmetrically on a cotton roll. These changes are independent of age, gender or body mass index (BMI). Due to the relative large sample size, the presented results can also be seen as norm values when body sway is used as an additional assessment of a TMD

    Systematic changes of the static upper body posture with a symmetric occlusion condition

    No full text
    Background: Temporary occlusal changes and their influence on the upper body statics are still controversially discussed. Furthermore, concrete statements on whether age- or gender-specific differences in neurophysiological reactions exist are missing. Therefore, it is the aim of this study to evaluate the immediate effects of a symmetrical occlusion blocking on the upper body posture. These effects shall be investigated for both genders and for a larger age range. Methods: In this study, 800 (407f/393 m) subjects volunteered aged from 21 to 60 years. Both genders were divided into four age groups according to decades. The three-dimensional upper body posture was measured by using the rasterstereography (ABW-Bodymapper). The habitual static posture was measured in two dental occlusion conditions (a) in rest position and (b) symmetrical blocking in the bicuspid region by cotton rolls. Results: A significant reduction of the trunk length (0.72 mm; p <  0.001), an increase of the lumbar (0.30°; p <  0.001) and the thoracic bending angle (0.14°; p = 0.001), a reduction of the spinal forward decline (0.16°; p <  0.001) and a reduction of the scapular distance (0.36 mm; p = 0.001) was found. Gender-specific reactions can only be recorded in scapular distance, in that regard men reduce this distance while over all age groups women did not show a significant change. Discussion: Slight gender- and age-independent reactions due to a symmetric occlusion blockade are shown: A gender independent reaction of the spinal related variables in the sagittal plane (thoracic and lumbar flexion angle, trunk length, spinal forward decline). In addition, a gender specific change of the shoulder blade distance could be observed, where men reduced the distance while female did not show a change. However, since these reactions are of a minimum amount, it can be concluded that neurophysiological compensation mechanisms work equally well regardless of age and sex, and the upper body posture of healthy people changes only very slightly due to a temporarily symmetrical altered bite position

    A selective and orally bioavailable VHL-recruiting PROTAC achieves SMARCA2 degradation in vivo

    No full text
    Targeted protein degradation offers an alternative modality to classical inhibition and holds the promise of addressing previously undruggable targets to provide novel therapeutic options for patients. Heterobifunctional molecules co-recruit the target and an E3 ligase, resulting in ubiquitylation and proteosome-dependent degradation of the target. The oral route of administration is the option of choice in the clinic, but has only been achieved so far by CRBN- recruiting bifunctional degrader molecules. We aimed to achieve orally bioavailable molecules that selectively degrade the BAF Chromatin Remodelling complex ATPase SMARCA2 over its closely related paralogue SMARCA4, to allow in vivo evaluation of the synthetic lethality concept of SMARCA2 dependency in SMARCA4 deficient cancers. Here we outline structure- and property-guided approaches that led to the first orally bioavailable VHL-recruiting degraders. Our tool compound, ACBI2, shows selective degradation of SMARCA2 over SMARCA4 in ex vivo human whole blood assays and in vivo efficacy in SMARCA4-deficient cancer models. This study demonstrates the feasibility for broadening the E3 ligase and physicochemical space that can be utilised for achieving oral efficacy with bifunctional molecules
    corecore