6,766 research outputs found
The evolution of the cluster X-ray scaling relations in the WARPS sample at 0.6<z<1.0
The X-ray properties of a sample of 11 high-redshift (0.6<z<1.0) clusters
observed with Chandra and/or XMM are used to investigate the evolution of the
cluster scaling relations. The observed evolution of the L-T and M-L relations
is consistent with simple self-similar predictions, in which the properties of
clusters reflect the properties of the universe at their redshift of
observation. When the systematic effect of assuming isothermality on the
derived masses of the high-redshift clusters is taken into account, the
high-redshift M-T and Mgas-T relations are also consistent with self-similar
evolution. Under the assumption that the model of self-similar evolution is
correct and that the local systems formed via a single spherical collapse, the
high-redshift L-T relation is consistent with the high-z clusters having formed
at a significantly higher redshift than the local systems. The data are also
consistent with the more realistic scenario of clusters forming via the
continuous accretion of material. The slope of the L-T relation at
high-redshift (B=3.29+/-0.38) is consistent with the local relation, and
significantly steeper then the self-similar prediction of B=2. This suggests
that the non-gravitational processes causing the steepening occurred at z>1 or
in the early stages of the clusters' formation, prior to their observation. The
properties of the intra-cluster medium at high-redshift are found to be similar
to those in the local universe. The mean surface-brightness profile slope for
the sample is 0.66+/-0.05, the mean gas mass fractions within R2500 and R200
are 0.073+/-0.010 and 0.12+/-0.02 respectively, and the mean metallicity of the
sample is 0.28+/-0.16 solar.Comment: 23 pages, 17 figures. Accepted for publication in MNRAS. Revised to
match accepted version: reanalysed data with latest calibrations, several
minor changes. Conclusions unchange
Kink stability, propagation, and length scale competition in the periodically modulated sine-Gordon equation
We have examined the dynamical behavior of the kink solutions of the
one-dimensional sine-Gordon equation in the presence of a spatially periodic
parametric perturbation. Our study clarifies and extends the currently
available knowledge on this and related nonlinear problems in four directions.
First, we present the results of a numerical simulation program which are not
compatible with the existence of a radiative threshold, predicted by earlier
calculations. Second, we carry out a perturbative calculation which helps
interpret those previous predictions, enabling us to understand in depth our
numerical results. Third, we apply the collective coordinate formalism to this
system and demonstrate numerically that it accurately reproduces the observed
kink dynamics. Fourth, we report on a novel occurrence of length scale
competition in this system and show how it can be understood by means of linear
stability analysis. Finally, we conclude by summarizing the general physical
framework that arises from our study.Comment: 19 pages, REVTeX 3.0, 24 figures available from A S o
Discovery of a very X-ray luminous galaxy cluster at z=0.89 in the WARPS survey
We report the discovery of the galaxy cluster ClJ1226.9+3332 in the Wide
Angle ROSAT Pointed Survey (WARPS). At z=0.888 and L_X=1.1e45 erg/s (0.5-2.0
keV, h_0=0.5) ClJ1226.9+3332 is the most distant X-ray luminous cluster
currently known. The mere existence of this system represents a huge problem
for Omega_0=1 world models.
At the modest (off-axis) resolution of the ROSAT PSPC observation in which
the system was detected, ClJ1226.9+3332 appears relaxed; an off-axis HRI
observation confirms this impression and rules out significant contamination
from point sources. However, in moderately deep optical images (R and I band)
the cluster exhibits signs of substructure in its apparent galaxy distribution.
A first crude estimate of the velocity dispersion of the cluster galaxies based
on six redshifts yields a high value of 1650 km/s, indicative of a very massive
cluster and/or the presence of substructure along the line of sight. While a
more accurate assessment of the dynamical state of this system requires much
better data at both optical and X-ray wavelengths, the high mass of the cluster
has already been unambiguously confirmed by a very strong detection of the
Sunyaev-Zel'dovich effect in its direction (Joy et al. 2001).
Using ClJ1226.9+3332 and ClJ0152.7-1357 (z=0.835), the second-most distant
X-ray luminous cluster currently known and also a WARPS discovery, we obtain a
first estimate of the cluster X-ray luminosity function at 0.8<z<1.4 and
L_X>5e44 erg/s. Using the best currently available data, we find the comoving
space density of very distant, massive clusters to be in excellent agreement
with the value measured locally (z<0.3), and conclude that negative evolution
is not required at these luminosities out to z~1. (truncated)Comment: accepted for publication in ApJ Letters, 6 pages, 2 figures, uses
emulateapj.st
Catalytic Asymmetric Hydroalkoxylation of C–C Multiple Bonds
Asymmetric hydroalkoxylation of alkenes constitutes a redox-neutral and 100% atom-economical strategy toward enantioenriched oxygenated building blocks from readily available starting materials. Despite their great potential, catalytic enantioselective additions of alcohols across a C–C multiple bond are particularly underdeveloped, especially compared to other hydrofunctionalization methods such as hydroamination. However, driven by some recent innovations, e.g., asymmetric MHAT methods, asymmetric photocatalytic methods, and the development of extremely strong chiral Brønsted acids, there has been a gratifying surge of reports in this burgeoning field. The goal of this review is to survey the growing landscape of asymmetric hydroalkoxylation by highlighting exciting new advances, deconstructing mechanistic underpinnings, and drawing insight from related asymmetric hydroacyloxylation and hydration. A deep appreciation of the underlying principles informs an understanding of the various selectivity parameters and activation modes in the realm of asymmetric alkene hydrofunctionalization while simultaneously evoking the outstanding challenges to the field moving forward. Overall, we aim to lay a foundation for cross-fertilization among various catalytic fields and spur further innovation in asymmetric hydroalkoxylations of C–C multiple bonds
The WARPS survey - IV: The X-ray luminosity-temperature relation of high redshift galaxy clusters
We present a measurement of the cluster X-ray luminosity-temperature relation
out to high redshift (z~0.8). Combined ROSAT PSPC spectra of 91 galaxy clusters
detected in the Wide Angle ROSAT Pointed Survey (WARPS) are simultaneously fit
in redshift and luminosity bins. The resulting temperature and luminosity
measurements of these bins, which occupy a region of the high redshift L-T
relation not previously sampled, are compared to existing measurements at low
redshift in order to constrain the evolution of the L-T relation. We find a
best fit to low redshift (z1 keV, to be L proportional
to T^(3.15\pm0.06). Our data are consistent with no evolution in the
normalisation of the L-T relation up to z~0.8. Combining our results with ASCA
measurements taken from the literature, we find eta=0.19\pm0.38 (for Omega_0=1,
with 1 sigma errors) where L_Bol is proportional to (1 + z)^eta T^3.15, or
eta=0.60\pm0.38 for Omega_0=0.3. This lack of evolution is considered in terms
of the entropy-driven evolution of clusters. Further implications for
cosmological constraints are also discussed.Comment: 11 pages, 7 figures, accepted for publication in MNRA
- …