23 research outputs found

    Flow cytometry-based ex vivo murine NK cell cytotoxicity assay

    Get PDF
    Direct killing of diseased cells is a hallmark function of NK cells. This protocol describes a flow-based assay to measur

    Immunotherapeutic approach to reduce senescent cells and alleviate senescence-associated secretory phenotype in mice

    Get PDF
    Accumulation of senescent cells (SNCs) with a senescence-associated secretory phenotype (SASP) has been implicated as a major source of chronic sterile inflammation leading to many age-related pathologies. Herein, we provide evidence that a bifunctional immunotherapeutic, HCW9218, with capabilities of neutralizing TGF-β and stimulating immune cells, can be safely administered systemically to reduce SNCs and alleviate SASP in mice. In the diabetic db/db mouse model, subcutaneous administration of HCW9218 reduced senescent islet β cells and SASP resulting in improved glucose tolerance, insulin resistance, and aging index. In naturally aged mice, subcutaneous administration of HCW9218 durably reduced the level of SNCs and SASP, leading to lower expression of pro-inflammatory genes in peripheral organs. HCW9218 treatment also reverted the pattern of key regulatory circadian gene expression in aged mice to levels observed in young mice and impacted genes associated with metabolism and fibrosis in the liver. Single-nucleus RNA Sequencing analysis further revealed that HCW9218 treatment differentially changed the transcriptomic landscape of hepatocyte subtypes involving metabolic, signaling, cell-cycle, and senescence-associated pathways in naturally aged mice. Long-term survival studies also showed that HCW9218 treatment improved physical performance without compromising the health span of naturally aged mice. Thus, HCW9218 represents a novel immunotherapeutic approach and a clinically promising new class of senotherapeutic agents targeting cellular senescence-associated diseases

    A novel fusion protein scaffold 18/12/TxM activates the IL-12, IL-15, and IL-18 receptors to induce human memory-like natural killer cells

    Get PDF
    Natural killer (NK) cells are cytotoxic innate lymphoid cells that are emerging as a cellular immunotherapy for various malignancies. NK cells are particularly dependent on interleukin (IL)-15 for their survival, proliferation, and cytotoxic function. NK cells differentiate into memory-like cells with enhanced effector function after a brief activation with IL-12, IL-15, and IL-18. N-803 is an IL-15 superagonist composed of an IL-15 mutant (IL-15N72D) bound to the sushi domain of IL-15Rα fused to the Fc region of IgG1, which results in physiological trans-presentation of IL-15. Here, we describe the creation of a novel triple-cytokine fusion molecule, 18/12/TxM, using the N-803 scaffold fused to IL-18 via the IL-15N72D domain and linked to a heteromeric single-chain IL-12 p70 by the sushi domain of the IL-15Rα. This molecule displays trispecific cytokine activity through its binding and signaling through the individual cytokine receptors. Compared with activation with the individual cytokines, 18/12/TxM induces similar short-term activation and memory-like differentiation of NK cells on both the transcriptional and protein level and identica

    Stage-specific requirement for Eomes in mature NK cell homeostasis and cytotoxicity

    Get PDF
    Natural killer (NK) cells are cytotoxic innate lymphoid cells (ILCs) that mediate antiviral and antitumor responses and require the transcriptional regulator Eomesodermin (Eomes) for early development. However, the role of Eomes and its molecular program in mature NK cell biology is unclear. To address this, we develop a tamoxifen-inducible, type-1-ILC-specific (Ncr1-targeted) cre mouse and combine this with Eomes-floxed mice. Eomes deletion after normal NK cell ontogeny results in a rapid loss of NK cells (but not ILC1s), with a particularly profound effect on penultimately mature stage III NK cells. Mechanisms responsible for stage III reduction include increased apoptosis and impaired maturation from stage II precursors. Induced Eomes deletion also decreases NK cell cytotoxicity and abrogates in vivo rejection of major histocompatibility complex (MHC)-class-I-deficient cells. However, other NK cell functional responses, and stage IV NK cells, are largely preserved. These data indicate that mature NK cells have distinct Eomes-dependent and -independent stages

    Memory-like differentiation enhances NK cell responses to melanoma

    Get PDF
    PURPOSE: Treatment of advanced melanoma is a clinical challenge. Natural killer (NK) cells are a promising cellular therapy for T cell-refractory cancers, but are frequently deficient or dysfunctional in patients with melanoma. Thus, new strategies are needed to enhance NK-cell antitumor responses. Cytokine-induced memory-like (ML) differentiation overcomes many barriers in the NK-cell therapeutics field, resulting in potent cytotoxicity and enhanced cytokine production against blood cancer targets. However, the preclinical activity of ML NK against solid tumors remains largely undefined. EXPERIMENTAL DESIGN: Phenotypic and functional alterations of blood and advanced melanoma infiltrating NK cells were evaluated using mass cytometry. ML NK cells from healthy donors (HD) and patients with advanced melanoma were evaluated for their ability to produce IFNγ and kill melanoma targets RESULTS: NK cells in advanced melanoma exhibited a decreased cytotoxic potential compared with blood NK cells. ML NK cells differentiated from HD and patients with advanced melanoma displayed enhanced IFNγ production and cytotoxicity against melanoma targets. This included ML differentiation enhancing melanoma patients\u27 NK-cell responses against autologous targets. The ML NK-cell response against melanoma was partially dependent on the NKG2D- and NKp46-activating receptors. Furthermore, in xenograft NSG mouse models, human ML NK cells demonstrated superior control of melanoma, compared with conventional NK cells. CONCLUSIONS: Blood NK cells from allogeneic HD or patients with advanced melanoma can be differentiated into ML NK cells for use as a novel immunotherapeutic treatment for advanced melanoma, which warrants testing in early-phase clinical trials

    T-BET and EOMES sustain mature human NK cell identity and antitumor function

    Get PDF
    Since the T-box transcription factors (TFs) T-BET and EOMES are necessary for initiation of NK cell development, their ongoing requirement for mature NK cell homeostasis, function, and molecular programming remains unclear. To address this, T-BET and EOMES were deleted in unexpanded primary human NK cells using CRISPR/Cas9. Deleting these TFs compromised in vivo antitumor response of human NK cells. Mechanistically, T-BET and EOMES were required for normal NK cell proliferation and persistence in vivo. NK cells lacking T-BET and EOMES also exhibited defective responses to cytokine stimulation. Single-cell RNA-Seq revealed a specific T-box transcriptional program in human NK cells, which was rapidly lost following T-BET and EOMES deletion. Further, T-BET- and EOMES-deleted CD56bright NK cells acquired an innate lymphoid cell precursor-like (ILCP-like) profile with increased expression of the ILC-3-associated TFs RORC and AHR, revealing a role for T-box TFs in maintaining mature NK cell phenotypes and an unexpected role of suppressing alternative ILC lineages. Our study reveals the critical importance of sustained EOMES and T-BET expression to orchestrate mature NK cell function and identity

    Ultra-deep sequencing reveals the mutational landscape of classical Hodgkin lymphoma

    Get PDF
    UNLABELLED: The malignant Hodgkin and Reed Sternberg (HRS) cells of classical Hodgkin lymphoma (cHL) are scarce in affected lymph nodes, creating a challenge to detect driver somatic mutations. As an alternative to cell purification techniques, we hypothesized that ultra-deep exome sequencing would allow genomic study of HRS cells, thereby streamlining analysis and avoiding technical pitfalls. To test this, 31 cHL tumor/normal pairs were exome sequenced to approximately 1,000× median depth of coverage. An orthogonal error-corrected sequencing approach verified \u3e95% of the discovered mutations. We identified mutations in genes novel to cHL including: CDH5 and PCDH7, novel stop gain mutations in IL4R, and a novel pattern of recurrent mutations in pathways regulating Hippo signaling. As a further application of our exome sequencing, we attempted to identify expressed somatic single-nucleotide variants (SNV) in single-nuclei RNA sequencing (snRNA-seq) data generated from a patient in our cohort. Our snRNA analysis identified a clear cluster of cells containing a somatic SNV identified in our deep exome data. This cluster has differentially expressed genes that are consistent with genes known to be dysregulated in HRS cells (e.g., PIM1 and PIM3). The cluster also contains cells with an expanded B-cell clonotype further supporting a malignant phenotype. This study provides proof-of-principle that ultra-deep exome sequencing can be utilized to identify recurrent mutations in HRS cells and demonstrates the feasibility of snRNA-seq in the context of cHL. These studies provide the foundation for the further analysis of genomic variants in large cohorts of patients with cHL. SIGNIFICANCE: Our data demonstrate the utility of ultra-deep exome sequencing in uncovering somatic variants in Hodgkin lymphoma, creating new opportunities to define the genes that are recurrently mutated in this disease. We also show for the first time the successful application of snRNA-seq in Hodgkin lymphoma and describe the expression profile of a putative cluster of HRS cells in a single patient

    Variants in the CD36 gene associate with the metabolic syndrome and high-density lipoprotein cholesterol

    No full text
    A region along chromosome 7q was recently linked to components of the metabolic syndrome (MetS) in several genome-wide linkage studies. Within this region, the CD36 gene, which encodes a membrane receptor for long-chain fatty acids and lipoproteins, is a potentially important candidate. CD36 has been documented to play an important role in fatty acid metabolism in vivo and subsequently may be involved in the etiology of the MetS. The protein also impacts survival to malaria and the influence of natural selection has resulted in high CD36 genetic variability in populations of African descent. We evaluated 36 tag SNPs across CD36 in the HyperGen population sample of 2020 African-Americans for impact on the MetS and its quantitative traits. Five SNPs associated with increased odds for the MetS [P = 0.0027–0.03, odds ratio (OR) = 1.3–1.4]. Coding SNP, rs3211938, previously shown to influence malaria susceptibility, is documented to result in CD36 deficiency in a homozygous subject. This SNP conferred protection against the MetS (P = 0.0012, OR = 0.61, 95%CI: 0.46–0.82), increased high-density lipoprotein cholesterol, HDL-C (P = 0.00018) and decreased triglycerides (P = 0.0059). Fifteen additional SNPs associated with HDL-C (P = 0.0028–0.044). We conclude that CD36 variants may impact MetS pathophysiology and HDL metabolism, both predictors of the risk of heart disease and type 2 diabetes
    corecore