157 research outputs found

    High-throughput screening with the Eimeria tenella CDC2-related kinase2/cyclin complex EtCRK2/EtCYC3a

    Get PDF
    The poultry disease coccidiosis, caused by infection with Eimeria spp. apicomplexan parasites, is responsible for enormous economic losses to the global poultry industry. The rapid increase of resistance to therapeutic agents, as well as the expense of vaccination with live attenuated vaccines, requires the development of new effective treatments for coccidiosis. Because of their key regulatory function in the eukaryotic cell cycle, cyclin-dependent kinases (CDKs) are prominent drug targets. The Eimeria tenella CDC2-related kinase 2 (EtCRK2) is a validated drug target that can be activated in vitro by the CDK activator XlRINGO (Xenopus laevis rapid inducer of G2/M progression in oocytes). Bioinformatics analyses revealed four putative E. tenella cyclins (EtCYCs) that are closely related to cyclins found in the human apicomplexan parasite Plasmodium falciparum. EtCYC3a was cloned, expressed in Escherichia coli and purified in a complex with EtCRK2. Using the non-radioactive time-resolved fluorescence energy transfer (TR-FRET) assay, we demonstrated the ability of EtCYC3a to activate EtCRK2 as shown previously for XlRINGO. The EtCRK2/EtCYC3a complex was used for a combined in vitro and in silico high-throughput screening approach, which resulted in three lead structures, a naphthoquinone, an 8-hydroxyquinoline and a 2-pyrimidinyl-aminopiperidine-propane-2-ol. This constitutes a promising starting point for the subsequent lead optimization phase and the development of novel anticoccidial drugs

    Expression of GPR17 receptor in a murine model of perinatal brain neuroinflammation and its possible interaction with Wnt pathway

    Get PDF
    Oligodendrocyte precursor cells (OPCs) are generated in specific germinal regions and progressively maturate to myelinating cells. Oligodendrocytes (OLs) differentiation is regulated by a complex interplay of intrinsic, epigenetic and extrinsic factors, including Wnt and the G protein-coupled receptor referred to as GPR17 (Mitew et al., 2014). This receptor responds to both extracellular nucleotides (UDP, UDP-glucose) and cysteinyl-leukotrienes (Ciana et al., 2006), endogenous signaling molecules involved in inflammatory response and in the repair of brain lesions. GPR17 is highly expressed in OPCs during the transition to immature OLs, but it is down-regulated in mature cells. Accordingly, GPR17-expressing OPCs are already present in mice at birth, increase over time, reach a peak at P10, before the peak of myelination, and then decline in the adult brain (Boda et al., 2011). Of note, in cultured OPCs, early GPR17 silencing has been shown to profoundly affect their ability to generate mature OLs (Fumagalli et al., 2011, 2015). Myelination defects characterize many brain disorders, including perinatal brain injury caused by systemic inflammation (Favrais et al., 2011), which is a leading cause of preterm birth. It has already been suggested that an imbalance in the Wnt/\u3b2-catenin/TCF4 pathway could be involved in the maturation arrest of OLs that is observed in premature infants (Yuen et al., 2014). No data are currently available on GPR17 in perinatal brain injury and on its possible interaction with Wnt pathway. Based on these premises, the aim of this work was to assess if the maturational blockade of OLs due to mild systemic perinatal inflammation, induced by intraperitoneal injections of interleukin-1\u3b2 (IL- 1\u3b2), is accompanied by defects in GPR17 expression and whether the Wnt pathway is involved in the regulation of GPR17. Data showed that in newborn mice exposed to IL-1\u3b2, which induces a blockade of oligodendrocyte maturation, GPR17 expression is not affected at early time point (P5), but it is downregulated at P10, when its expression should be maximal. Moreover, in vitro studies revealed that the maturation blockade of the oligodendroglial cell line Oli-Neu, after treatment with a Wnt Agonist II, is accompanied by a severe inhibition of GPR17 expression. In conclusion, our data have shown that myelination defects observed in perinatal brain injury are associated with defects in GPR17 expression; further studies are needed to characterize the molecular link between Wnt pathway and GPR17 receptor

    Changes in SARS-CoV-2 viral load and mortality during the initial wave of the pandemic in New York City

    Get PDF
    Funding: This work was partially supported by the National Center for Advancing Translational Sciences of the National Institutes of Health (UL1 TR0023484 to Julianne Imperato-McGinley) and the National Institute of Allergy and Infectious Diseases (UM1 AI069470 to M.E.S).Public health interventions such as social distancing and mask wearing decrease the incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but it is unclear whether they decrease the viral load of infected patients and whether changes in viral load impact mortality from coronavirus disease 2019 (COVID-19). We evaluated 6923 patients with COVID-19 at six New York City hospitals from March 15-May 14, 2020, corresponding with the implementation of public health interventions in March. We assessed changes in cycle threshold (CT) values from reverse transcription-polymerase chain reaction tests and in-hospital mortality and modeled the impact of viral load on mortality. Mean CT values increased between March and May, with the proportion of patients with high viral load decreasing from 47.7% to 7.8%. In-hospital mortality increased from 14.9% in March to 28.4% in early April, and then decreased to 8.7% by May. Patients with high viral loads had increased mortality compared to those with low viral loads (adjusted odds ratio 2.34). If viral load had not declined, an estimated 69 additional deaths would have occurred (5.8% higher mortality). SARS-CoV-2 viral load steadily declined among hospitalized patients in the setting of public health interventions, and this correlated with decreases in mortality.Peer reviewe

    Cell-Cycle-Based Strategies to Drive Myocardial Repair

    Get PDF
    Cardiomyocytes exhibit robust proliferative activity during development. After birth, cardiomyocyte proliferation is markedly reduced. Consequently, regenerative growth in the postnatal heart via cardiomyocyte proliferation (and, by inference, proliferation of stem-cell-derived cardiomyocytes) is limited and often insufficient to affect repair following injury. Here, we review studies wherein cardiomyocyte cell cycle proliferation was induced via targeted expression of cyclin D2 in postnatal hearts. Cyclin D2 expression resulted in a greater than 500-fold increase in cell cycle activity in transgenic mice as compared to their nontransgenic siblings. Induced cell cycle activity resulted in infarct regression and concomitant improvement in cardiac hemodynamics following coronary artery occlusion. These studies support the notion that cell-cycle-based strategies can be exploited to drive myocardial repair following injury

    The oxytocin/vasopressin receptor antagonist atosiban delays the gastric emptying of a semisolid meal compared to saline in human

    Get PDF
    BACKGROUND: Oxytocin is released in response to a meal. Further, mRNA for oxytocin and its receptor have been found throughout the gastrointestinal (GI) tract. The aim of this study was therefore to examine whether oxytocin, or the receptor antagonist atosiban, influence the gastric emptying. METHODS: Ten healthy volunteers (five men) were examined regarding gastric emptying at three different occasions: once during oxytocin stimulation using a pharmacological dose; once during blockage of the oxytocin receptors (which also blocks the vasopressin receptors) and thereby inhibiting physiological doses of oxytocin; and once during saline infusion. Gastric emptying rate (GER) was assessed and expressed as the percentage reduction in antral cross-sectional area from 15 to 90 min after ingestion of rice pudding. The assessment was performed by real-time ultrasonography. At the same time, the feeling of satiety was registered using visual satiety scores. RESULTS: Inhibition of the binding of endogenous oxytocin by the receptor antagonist delayed the GER by 37 % compared to saline (p = 0.037). In contrast, infusion of oxytocin in a dosage of 40 mU/min did not affect the GER (p = 0.610). Satiation scores areas in healthy subjects after receiving atosiban or oxytocin did not show any significant differences. CONCLUSION: Oxytocin and/or vasopressin seem to be regulators of gastric emptying during physiological conditions, since the receptor antagonist atosiban delayed the GER. However, the actual pharmacological dose of oxytocin in this study had no effect. The effect of oxytocin and vasopressin on GI motility has to be further evaluated

    Dimethyl sulfoxide blocks herpes simplex virus-1 productive infection in vitro acting at different stages with positive cooperativity. Application of micro-array analysis

    Get PDF
    BACKGROUND: Dimethyl sulfoxide (DMSO) is frequently used at a concentration of up to 95% in the formulation of antiherpetic agents because of its properties as a skin penetration enhancer. Here, we have analyzed the effect of DMSO on several parameters of Herpes Simplex Virus replication. METHODS: Productive infection levels of HSV-1 were determined by plaque assay or by reporter gene activity, and its DNA replication was estimated by PCR. Transcript levels were evaluated with HSV-specific DNA micro-arrays. RESULTS: DMSO blocks productive infection in vitro in different cell types with a 50% inhibitory concentration (IC(50)) from 0.7 to 2% depending upon the multiplicity of infection. The concentration dependence exhibits a Hill coefficient greater than 1, indicating that DMSO blocks productive infection by acting at multiple different points (mechanisms of action) with positive cooperativity. Consistently, we identified at least three distinct temporal target mechanisms for inhibition of virus growth by DMSO. At late stages of infection, DMSO reduces virion infectivity, and markedly inhibits viral DNA replication. A third mode of action was revealed using an oligonucleotide-based DNA microarray system for HSV. These experiments showed that DMSO reduced the transcript levels of many HSV-1 genes; including several genes coding for proteins involved in forming and assembling the virion. Also, DMSO markedly inhibited some but not all early transcripts indicating a previously unknown mode for inhibiting the early phase of HSV transcription-replication cycle. CONCLUSION: These observations suggest that DMSO itself may have a role in the anti-herpetic activity of formulations utilizing it as a dispersant

    Cyclin-Dependent Kinase Activity Controls the Onset of the HCMV Lytic Cycle

    Get PDF
    The onset of human cytomegalovirus (HCMV) lytic infection is strictly synchronized with the host cell cycle. Infected G0/G1 cells support viral immediate early (IE) gene expression and proceed to the G1/S boundary where they finally arrest. In contrast, S/G2 cells can be infected but effectively block IE gene expression and this inhibition is not relieved until host cells have divided and reentered G1. During latent infection IE gene expression is also inhibited, and for reactivation to occur this block to IE gene expression must be overcome. It is only poorly understood which viral and/or cellular activities maintain the block to cell cycle or latency-associated viral IE gene repression and whether the two mechanisms may be linked. Here, we show that the block to IE gene expression during S and G2 phase can be overcome by both genotoxic stress and chemical inhibitors of cellular DNA replication, pointing to the involvement of checkpoint-dependent signaling pathways in controlling IE gene repression. Checkpoint-dependent rescue of IE expression strictly requires p53 and in the absence of checkpoint activation is mimicked by proteasomal inhibition in a p53 dependent manner. Requirement for the cyclin dependent kinase (CDK) inhibitor p21 downstream of p53 suggests a pivotal role for CDKs in controlling IE gene repression in S/G2 and treatment of S/G2 cells with the CDK inhibitor roscovitine alleviates IE repression independently of p53. Importantly, CDK inhibiton also overcomes the block to IE expression during quiescent infection of NTera2 (NT2) cells. Thus, a timely block to CDK activity not only secures phase specificity of the cell cycle dependent HCMV IE gene expression program, but in addition plays a hitherto unrecognized role in preventing the establishment of a latent-like state

    Lysophosphatidate Induces Chemo-Resistance by Releasing Breast Cancer Cells from Taxol-Induced Mitotic Arrest

    Get PDF
    Taxol is a microtubule stabilizing agent that arrests cells in mitosis leading to cell death. Taxol is widely used to treat breast cancer, but resistance occurs in 25-69% of patients and it is vital to understand how Taxol resistance develops to improve chemotherapy. The effects of chemotherapeutic agents are overcome by survival signals that cancer cells receive. We focused our studies on autotaxin, which is a secreted protein that increases tumor growth, aggressiveness, angiogenesis and metastasis. We discovered that autotaxin strongly antagonizes the Taxol-induced killing of breast cancer and melanoma cells by converting the abundant extra-cellular lipid, lysophosphatidylcholine, into lysophosphatidate. This lipid stimulates specific G-protein coupled receptors that activate survival signals.In this study we determined the basis of these antagonistic actions of lysophosphatidate towards Taxol-induced G2/M arrest and cell death using cultured breast cancer cells. Lysophosphatidate does not antagonize Taxol action in MCF-7 cells by increasing Taxol metabolism or its expulsion through multi-drug resistance transporters. Lysophosphatidate does not lower the percentage of cells accumulating in G2/M by decreasing exit from S-phase or selective stimulation of cell death in G2/M. Instead, LPA had an unexpected and remarkable action in enabling MCF-7 and MDA-MB-468 cells, which had been arrested in G2/M by Taxol, to normalize spindle structure and divide, thus avoiding cell death. This action involves displacement of Taxol from the tubulin polymer fraction, which based on inhibitor studies, depends on activation of LPA receptors and phosphatidylinositol 3-kinase.This work demonstrates a previously unknown consequence of lysophosphatidate action that explains why autotaxin and lysophosphatidate protect against Taxol-induced cell death and promote resistance to the action of this important therapeutic agent

    Loss of Cytoplasmic CDK1 Predicts Poor Survival in Human Lung Cancer and Confers Chemotherapeutic Resistance

    Get PDF
    The dismal lethality of lung cancer is due to late stage at diagnosis and inherent therapeutic resistance. The incorporation of targeted therapies has modestly improved clinical outcomes, but the identification of new targets could further improve clinical outcomes by guiding stratification of poor-risk early stage patients and individualizing therapeutic choices. We hypothesized that a sequential, combined microarray approach would be valuable to identify and validate new targets in lung cancer. We profiled gene expression signatures during lung epithelial cell immortalization and transformation, and showed that genes involved in mitosis were progressively enhanced in carcinogenesis. 28 genes were validated by immunoblotting and 4 genes were further evaluated in non-small cell lung cancer tissue microarrays. Although CDK1 was highly expressed in tumor tissues, its loss from the cytoplasm unexpectedly predicted poor survival and conferred resistance to chemotherapy in multiple cell lines, especially microtubule-directed agents. An analysis of expression of CDK1 and CDK1-associated genes in the NCI60 cell line database confirmed the broad association of these genes with chemotherapeutic responsiveness. These results have implications for personalizing lung cancer therapy and highlight the potential of combined approaches for biomarker discovery
    corecore