147 research outputs found
Interleukin-10 and soluble tumor necrosis factor receptor II are potential biomarkers of Plasmodium falciparum infections in pregnant women: a case-control study from Nanoro, Burkina Faso.
BACKGROUND: Diagnosis of malaria in pregnancy is problematic due to the low sensitivity of conventional diagnostic tests (rapid diagnostic test and microscopy), which is exacerbated due to low peripheral parasite densities, and lack of clinical symptoms. In this study, six potential biomarkers to support malaria diagnosis in pregnancy were evaluated. METHODS: Blood samples were collected from pregnant women at antenatal clinic visits and at delivery. Microscopy and real-time PCR were performed for malaria diagnosis and biomarker analyses were performed by ELISA (interleukin 10, IL-10; tumor necrosis factor-α, TNF-α; soluble tumor necrosis factor receptor II, sTNF-RII; soluble fms-like tyrosine kinase 1, sFlt-1; leptin and apolipoprotein B, Apo-B). A placental biopsy was collected at delivery to determine placental malaria. RESULTS: IL-10 and sTNF-RII were significantly higher at all time-points in malaria-infected women (p < 0.001). Both markers were also positively associated with parasite density (p < 0.001 and p = 0.003 for IL-10 and sTNF-RII respectively). IL-10 levels at delivery, but not during pregnancy, were negatively associated with birth weight. A prediction model was created using IL-10 and sTNF-RII cut-off points. For primigravidae the model had a sensitivity of 88.9% (95%CI 45.7-98.7%) and specificity of 83.3% (95% CI 57.1-94.9%) for diagnosing malaria during pregnancy. For secundi- and multigravidae the sensitivity (81.8% and 56.5% respectively) was lower, while specificity (100.0% and 94.3% respectively) was relatively high. Sub-microscopic infections were detected in 2 out of 3 secundi- and 5 out of 12 multigravidae. CONCLUSIONS: The combination of biomarkers IL-10 and sTNF-RII have the potential to support malaria diagnosis in pregnancy. Additional markers may be needed to increase sensitivity and specificity, this is of particular importance in populations with sub-microscopic infections or in whom other inflammatory diseases are prevalent
The performance of serological tests for Leishmania infantum infection screening in dogs depends on the prevalence of the disease
Dogs are considered the main reservoir of Leishmania infantum. This protozoan causes visceral leishmaniasis (VL), an uncontrolled urban zoonosis in Brazil. Serological tests and polymerase chain reaction (PCR) on peripheral blood were performed to identify infected dogs in scenarios of higher and lower prevalence of the disease (Teresina and Vitória). One-hundred infected and 57 non-infected animals from Teresina and 100 non-infected animals from Vitória were studied. Animal selection was not dependent on previous serology. The sensitivity (Teresina) and specificity (Teresina and Vitória) were as follows: indirect antibody fluorescence (IFAT) cut-off of 1:40 (IFAT 1:40): 96%, 18%, and 76%; IFAT 1:80: 90%, 33%, and 93%; direct agglutination test (DAT): 96%, 33%, and 98%; fast agglutination screening test (FAST): 93%, 68%, and 100%; immunochromatographic assay with a recombinant rK39 antigen (rK39): 88%, 74%, and 98%; enzyme linked immunosorbent assay (ELISA): 91%, 79%, and 98%; rapid dual-path platform test (TR DPP®): 98%, 60%, and 98%; and blood PCR: 29%, 93%, and 97%, respectively. In the high transmission area, none of the tests adequately discriminated L. infantum-infected from non-infected dogs. However, in the high transmission city, the area under the receiver operating characteristic (ROC) curve of FAST, DAT, ICrK39, ELISA and TR DPP® was high
Molecular assays for antimalarial drug resistance surveillance: A target product profile.
Antimalarial drug resistance is a major constraint for malaria control and elimination efforts. Artemisinin-based combination therapy is now the mainstay for malaria treatment. However, delayed parasite clearance following treatment with artemisinin derivatives has now spread in the Greater Mekong Sub region and may emerge or spread to other malaria endemic regions. This spread is of great concern for malaria control programmes, as no alternatives to artemisinin-based combination therapies are expected to be available in the near future. There is a need to strengthen surveillance systems for early detection and response to the antimalarial drug resistance threat. Current surveillance is mainly done through therapeutic efficacy studies; however these studies are complex and both time- and resource-intensive. For multiple common antimalarials, parasite drug resistance has been correlated with specific genetic mutations, and the molecular markers associated with antimalarial drug resistance offer a simple and powerful tool to monitor the emergence and spread of resistant parasites. Different techniques to analyse molecular markers associated with antimalarial drug resistance are available, each with advantages and disadvantages. However, procedures are not adequately harmonized to facilitate comparisons between sites. Here we describe the target product profiles for tests to analyse molecular markers associated with antimalarial drug resistance, discuss how use of current techniques can be standardised, and identify the requirements for an ideal product that would allow malaria endemic countries to provide useful spatial and temporal information on the spread of resistance
Interleukin-10 and soluble tumor necrosis factor receptor II are potential biomarkers of Plasmodium falciparum infections in pregnant women: a case-control study from Nanoro, Burkina Faso
Background: Diagnosis of malaria in pregnancy is problematic due to the low sensitivity of conventional diagnostic tests (rapid diagnostic test and microscopy), which is exacerbated due to low peripheral parasite densities, and lack of clinical symptoms. In this study, six potential biomarkers to support malaria diagnosis in pregnancy were evaluated.Methods: Blood samples were collected from pregnant women at antenatal clinic visits and at delivery. Microscopy and real-time PCR were performed for malaria diagnosis and biomarker analyses were performed by ELISA (interleukin 10, IL-10; tumor necrosis factor-α, TNF-α; soluble tumor necrosis factor receptor II, sTNF-RII; soluble fms-like tyrosine kinase 1, sFlt-1; leptin and apolipoprotein B, Apo-B). A placental biopsy was collected at delivery to determine placental malaria.Results: IL-10 and sTNF-RII were significantly higher at all time-points in malaria-infected women (p < 0.001). Both markers were also positively associated with parasite density (p < 0.001 and p = 0.003 for IL-10 and sTNF-RII respectively). IL-10 levels at delivery, but not during pregnancy, were negatively associated with birth weight. A prediction model was created using IL-10 and sTNF-RII cut-off points. For primigravidae the model had a sensitivity of 88.9% (95%CI 45.7–98.7%) and specificity of 83.3% (95% CI 57.1–94.9%) for diagnosing malaria during pregnancy. For secundi- and multigravidae the sensitivity (81.8% and 56.5% respectively) was lower, while specificity (100.0% and 94.3% respectively) was relatively high. Sub-microscopic infections were detected in 2 out of 3 secundi- and 5 out of 12 multigravidae.Conclusions: The combination of biomarkers IL-10 and sTNF-RII have the potential to support malaria diagnosis in pregnancy. Additional markers may be needed to increase sensitivity and specificity, this is of particular importance in populations with sub-microscopic infections or in whom other inflammatory diseases are prevalent
Blood Parasite Load as an Early Marker to Predict Treatment Response in Visceral Leishmaniasis in Eastern Africa
Background: To expedite the development of new oral treatment regimens for visceral leishmaniasis (VL), there is a need for early markers to evaluate treatment response and predict long-term outcomes. Methods: Data from 3 clinical trials were combined in this study, in which Eastern African VL patients received various antileishmanial therapies. Leishmania kinetoplast DNA was quantified in whole blood with real-time quantitative polymerase chain reaction (qPCR) before, during, and up to 6 months after treatment. The predictive performance of pharmacodynamic parameters for clinical relapse was evaluated using receiver-operating characteristic curves. Clinical trial simulations were performed to determine the power associated with the use of blood parasite load as a surrogate endpoint to predict clinical outcome at 6 months. Results: The absolute parasite density on day 56 after start of treatment was found to be a highly sensitive predictor of relapse within 6 months of follow-up at a cutoff of 20 parasites/mL (area under the curve 0.92, specificity 0.91, sensitivity 0.89). Blood parasite loads correlated well with tissue parasite loads (ρ = 0.80) and with microscopy gradings of bone marrow and spleen aspirate smears. Clinical trial simulations indicated a > 80% power to detect a difference in cure rate between treatment regimens if this difference was high (> 50%) and when minimally 30 patients were included per regimen. Conclusions: Blood Leishmania parasite load determined by qPCR is a promising early biomarker to predict relapse in VL patients. Once optimized, it might be useful in dose finding studies of new chemical entities.This work was supported by the European Union Seventh Framework Programme Africoleish (grant number 305178); the World Health Organization—Special Programme for Research and Training in Tropical Diseases (WHO-TDR); the French Development Agency, France (grant number CZZ2062); UK aid, UK; the Federal Ministry of Education and Research through KfW, Germany; the Medicor Foundation, Liechtenstein; Médecins Sans Frontières, International; the Swiss Agency for Development and Cooperation (SDC), Switzerland (grant number 81017718); the Dutch Ministry of Foreign Affairs (DGIS), the Netherlands (grant number PDP15CH21); the French Ministry for Europe and Foreign Affairs (MEAE), France; The Rockefeller Foundation, USA; BBVA Foundation, Spain; the European Union—AfriKADIA project of the Second European and Developing Countries Clinical Trials Partnership Programme (EDCTP2) (grant number RIA2016S1635); and ZonMw/Dutch Research Council (NWO) Veni grant (project number 91617140 to T. P. C. D.).S
The performance of serological tests for Leishmania infantum infection screening in dogs depends on the prevalence of the disease
Dogs are considered the main reservoir of Leishmania infantum. This protozoan causes visceral leishmaniasis (VL), an uncontrolled urban zoonosis in Brazil. Serological tests and polymerase chain reaction (PCR) on peripheral blood were performed to identify infected dogs in scenarios of higher and lower prevalence of the disease (Teresina and Vitória). One-hundred infected and 57 non-infected animals from Teresina and 100 non-infected animals from Vitória were studied. Animal selection was not dependent on previous serology. The sensitivity (Teresina) and specificity (Teresina and Vitória) were as follows: indirect antibody fluorescence (IFAT) cut-off of 1:40 (IFAT 1:40): 96%, 18%, and 76%; IFAT 1:80: 90%, 33%, and 93%; direct agglutination test (DAT): 96%, 33%, and 98%; fast agglutination screening test (FAST): 93%, 68%, and 100%; immunochromatographic assay with a recombinant rK39 antigen (rK39): 88%, 74%, and 98%; enzyme linked immunosorbent assay (ELISA): 91%, 79%, and 98%; rapid dual-path platform test (TR DPP®): 98%, 60%, and 98%; and blood PCR: 29%, 93%, and 97%, respectively. In the high transmission area, none of the tests adequately discriminated L. infantum-infected from non-infected dogs. However, in the high transmission city, the area under the receiver operating characteristic (ROC) curve of FAST, DAT, ICrK39, ELISA and TR DPP® was hig
Improving health worker performance through text messaging: A mixed-methods evaluation of a pilot intervention designed to increase coverage of intermittent preventive treatment of malaria in pregnancy in West Nile, Uganda
Poor health worker performance is a well-documented obstacle to quality service provision. Due to the increasingly widespread availability of mobile devices, mobile health (mHealth) has received growing attention as a service improvement tool. This pilot study explored feasibility, acceptability and outcomes of an mHealth intervention designed to increase coverage of intermittent preventive treatment of malaria in pregnancy (IPTp) in two districts of West Nile, Uganda. In both districts, selected health workers (N = 48) received classroom training on malaria in pregnancy. All health workers in one district (N = 49) subsequently received 24 text messages reinforcing the training content. The intervention was evaluated using a mixed-methods approach, including four focus group discussions with health workers and three in-depth interviews with district health officials, health worker knowledge assessments one month (N = 90) and six months (N = 89) after the classroom training, and calculation of IPTp coverage from participating health facilities’ (N = 16) antenatal care registers covering six months pre- and post-intervention. Complementing classroom training with text messaging was found to be a feasible, acceptable and inexpensive approach to improving health worker performance. The messages served as reminders to those who had attended the classroom training and helped spread information to those who had not. Health workers in the district where text messages were sent had significantly better knowledge of IPTp, achieving an increased composite knowledge score of 6.00 points (maximum score: 40) compared with those in the district where only classroom training was provided. Average facility coverage of three doses of IPTp was also significantly higher where text messages were sent (85.8%) compared with the district where only classroom training was provided (54.1%). This intervention shows promise for the improvement of health worker performance for delivery of IPTp, and could have significant broader application
Phase II Evaluation of Sensitivity and Specificity of PCR and NASBA Followed by Oligochromatography for Diagnosis of Human African Trypanosomiasis in Clinical Samples from D.R. Congo and Uganda
Diagnosis plays a central role in the control of human African trypanosomiasis (HAT) whose mainstay in disease control is chemotherapy. However, accurate diagnosis is hampered by the absence of sensitive techniques for parasite detection. Without concentrating the blood, detection thresholds can be as high as 10,000 trypanosomes per milliliter of blood. The polymerase chain reaction (PCR) and nucleic acid sequence-based amplification (NASBA) are promising molecular diagnostics that generally yield high sensitivity and could improve case detection. Recently, these two tests were coupled to oligochromatography (OC) for simplified and standardized detection of amplified products, eliminating the need for electrophoresis. In this study, we evaluated the diagnostic accuracy of these two novel tests on blood specimens from HAT patients and healthy endemic controls from D.R. Congo and Uganda. Both tests exhibited good sensitivity and specificity compared to the current diagnostic tests and may be valuable tools for sensitive and specific parasite detection in clinical specimens. These standardized molecular test formats open avenues for improved case detection, particularly in epidemiological studies and in disease diagnosis at reference centres
A randomized trial to monitor the efficacy and effectiveness by QT-NASBA of artemether-lumefantrine versus dihydroartemisinin-piperaquine for treatment and transmission control of uncomplicated Plasmodium falciparum malaria in western Kenya
<p>Abstract</p> <p>Background</p> <p>Many countries have implemented artemisinin-based combination therapy (ACT) for the first-line treatment of malaria. Although many studies have been performed on efficacy and tolerability of the combination arthemeter-lumefantrine (AL) or dihydroartemisinin-piperaquine (DP), less is known of the effect of these drugs on gametocyte development, which is an important issue in malaria control.</p> <p>Methods and results</p> <p>In this two-arm randomized controlled trial, 146 children were treated with either AL or DP. Both groups received directly observed therapy and were followed for 28 days after treatment. Blood samples were analysed with microscopy and NASBA. In comparison with microscopy NASBA detected much more gametocyte positive individuals. Moreover, NASBA showed a significant difference in gametocyte clearance in favour of AL compared to DP. The decline of parasitaemia was slower and persistence or development of gametocytes was significantly higher and longer at day 3, 7 and 14 in the DP group but after 28 days no difference could be observed between both treatment arms.</p> <p>Conclusion</p> <p>Although practical considerations could favour the use of one drug over another, the effect on gametocytogenesis should also be taken into account and studied further using molecular tools like NASBA. This also applies when a new drug is introduced.</p> <p>Trial registration</p> <p>Current controlled trials ISRCTN36463274</p
- …