41 research outputs found

    Informing Management of Atlantic Bluefin Tuna Using Telemetry Data

    Get PDF
    Sustainable management of exploited marine fish and wildlife populations requires knowledge about their productivity. Survival from natural causes of mortality is a key component of population productivity, but is notoriously difficult to estimate. We evaluate the potential for acoustic telemetry as a long-term monitoring tool to estimate rates of natural mortality. We present a Bayesian multistate mark-recapture model for telemetry data collected over a decade from 188 Atlantic bluefin tuna (Thunnus thynnus) and apply it to estimate the rate of natural mortality using only acoustic tag detections for all animals, or using acoustic tag detections for 96 single-tagged tuna plus acoustic tag detections combined with estimated positions from pop-up satellite archival tags for 92 double-tagged animals. We support the model for bluefin tuna with a simulation study to quantify bias in estimates of population dynamics parameters and investigate the effect of auxiliary information from satellite tagging on mortality rate estimates for different acoustic tag detection probability scenarios.We obtained posterior estimates of the instantaneous annual natural mortality (survival) rate across a decade of tagging for Atlantic bluefin tuna of 0.17 yr(-1) (0.84 yr(-1)) both using only acoustic tagging data, and using a combination of acoustic and satellite tagging data. Use of a prior implying a higher rate of fishing mortality yielded an instantaneous annual natural mortality (survival) estimate of 0.10 yr(-1) (0.90 yr(-1)), with combined acoustic and satellite tag data. Results from the simulation study indicate that the use of satellite tags can improve the precision and accuracy of estimates of detection probabilities, area-specific movement probabilities and mortality rates, where the extent of the improvement depends on true underlying acoustic tag detection probabilities. Our work demonstrates that long-term acoustic tagging data sets have strong potential for monitoring of highly migratory marine fish and wildlife populations, providing information on a number of key parameters, including survival and movement rates. However, improved information on tag reporting rates or fishing mortality is needed to better separate natural and fisheries mortality for Atlantic bluefin tuna

    Temperature Effects on Metabolic Rate of Juvenile Pacific Bluefin Tuna \u3ci\u3eThunnus Orientalis\u3c/i\u3e

    Get PDF
    Pacific bluefin tuna inhabit a wide range of thermal environments across the Pacific ocean. To examine how metabolism varies across this thermal range, we studied the effect of ambient water temperature on metabolic rate of juvenile Pacific bluefin tuna, Thunnus thynnus, swimming in a swim tunnel. Rate of oxygen consumption (MO2) was measured at ambient temperatures of 8–25°C and swimming speeds of 0.75–1.75 body lengths (BL) s–1. Pacific bluefin swimming at 1 BL s–1 per second exhibited a U-shaped curve of metabolic rate vs ambient temperature, with a thermal minimum zone between 15°C to 20°C. Minimum MO2 of 175±29 mg kg–1 h–1–1 was recorded at 15°C, while both cold and warm temperatures resulted in increased metabolic rates of 331±62 mg kg–1 h–1–1 at 8°C and 256±19 mg kg–1 h–1–1 at 25°C. Tailbeat frequencies were negatively correlated with ambient temperature. Additional experiments indicated that the increase in MO2 at low temperature occurred only at low swimming speeds. Ambient water temperature data from electronic tags implanted in wild fish indicate that Pacific bluefin of similar size to the experimental fish used in the swim tunnel spend most of their time in ambient temperatures in the metabolic thermal minimum zone

    Atlantic Bluefin Tuna (Thunnus thynnus) Diet in the Gulf of St. Lawrence and on the Eastern Scotian Shelf

    Get PDF
    The stomach contents of 68 Atlantic bluefin tuna (Thunnus thynnus) landed in Port Hood and Canso, Nova Scotia, in 2010, were analyzed to characterize the diet of bluefin tuna at the two locations. Of the sampled fish, 54 stomachs had contents. Pelagic schooling fish such as herring (Clupea harengus) and mackerel (Scomber scombrus) dominated the diets in both regions. However, a number of rare species, including demersal species, were also observed. Despite the difference in location and the significantly larger size of the Atlantic bluefin tuna landed in Port Hood, the diets of the Atlantic bluefin tuna landed at both sites were similar

    Pop-up archival tags reveal environmental influences on the vertical movements of silvertip sharks (Carcharhinus albimarginatus)

    Get PDF
    Vertical space use informs the ecology and management of marine species, but studies of reef-associated sharks often focus on horizontal movements. We analysed the vertical movements of silvertip sharks (Carcharhinus albimarginatus) using pop-up archival tags deployed on seven individuals in the Chagos Archipelago, central Indian Ocean. The sharks changed depth predictably with water column thermal structure, moving deeper with seasonal increases in mixed layer depth while occupying a narrow ambient water temperature range around ~27°C. At shorter timescales, higher resolution data from five tags showed that silvertip shark depth varied cyclically with surface light levels, increasing during daylight and on nights around full moon. This matches the diel vertical migrations of many fish species, suggesting the sharks’ light-driven depth changes might relate to foraging. While most vertical movements (>98%) were within the mixed layer, deeper dives to 200-800 m occurred approximately every three days. High-resolution data from one recovered tag showed the shark ascending deep (>200 m) dives in two sharply defined phases, initially fast then slow. Analysis of dive profiles against dissolved oxygen (DO) data suggested that the shark may have ascended rapidly to escape low DO levels at depth, then reduced its ascent rate 50-80% once DO levels increased. While a small sample, the electronic tags deployed in this study revealed the silvertip sharks’ predictable use of mixed layer waters, narrow thermal range and apparent intolerance of hypoxic conditions. These characteristics may exacerbate the species’ vulnerability as oceanic warming and shoaling oxygen minimum zones modify vertical habitat availability

    Assignment of tracks from tagged Atlantic bluefin tuna Thunnus thynnus to potential stocks using behavioural differences and habitat partitioning

    Get PDF
    IntroductionAtlantic bluefin tuna (ABT) are large, migratory pelagic predators of high economic importance. ABT are currently managed as two independent stocks assigned to discrete spawning areas (Gulf of Mexico, and Mediterranean); however, stock overlap outside spawning areas makes accurate assignment of catch to stock-of-origin difficult.MethodsWithin this two-stock paradigm, we characterised stock-specific spatial distributions and behaviours by comparing habitat usage and vertical movement behaviours of 118 electronically tagged adult ABT spatially assigned to the GOM and Med spawning grounds. These spatial and behavioural differences were used in tests to probabilistically assign unknown individuals (which did not visit the GOM/Med spawning areas) to a stock.ResultsThis new methodological approach using existing tag data, enables increased assignment of a track to a potential stock, to be achieved before genetic assignments. We identified certain markedly different movement patterns, range extents, depth use preferences (and associated area usage), migration directness and speeds, corresponding distance from shore, and mesopelagic-layer visitation. The probabilistic assignment approach had 97% in-bag testing accuracy, then assigned 190 individuals to a stock, doubling the number of assigned stock-of-origin tracks in our dataset, and potentially revealing novel movement and behaviour patterns among pre-spawning-age ABT.DiscussionThis approach can be easily adapted to other study species, more stocks, and different testing variables, hopefully serving as a useful addition to the fisheries management toolkit

    Detecting Mediterranean White Sharks with Environmental DNA

    Get PDF
    The white shark (Carcharodon carcharias) is a globally distributed, ecologically important top predator whose biology and population dynamics are challenging to study. Basic biological parameters remain virtually unknown in the Mediterranean Sea due to its historically low population density, dwindling population size, and lack of substantial sightings. White sharks are considered Critically Endangered in the Mediterranean Sea, and recent analyses suggest that the population has declined by 52% to 96% from historical levels in different Mediterranean sectors (Moro et al., 2020). Thus, white shark sightings dating back to 1860 are being used to estimate population trajectories throughout the entire region. Though the population size is unknown, remaining individuals are thought to be primarily restricted to a handful of hotspots deemed important for their reproduction and foraging. One of these hypothesized hotspots is the Sicilian Channel, which accounts for 19% of total historical sightings

    Estimating Space Use of Mobile Fishes in a Large Marine Protected Area With Methodological Considerations in Acoustic Array Design

    Get PDF
    Marine protected areas (MPAs) have become an increasingly important tool to protect and conserve marine resources. However, there remains much debate about how effective MPAs are, especially in terms of their ability to protect mobile marine species such as teleost and chondrichthyan fishes. We used satellite and acoustic tags to assess the ability of a large oceanic MPA, the British Indian Ocean Territory MPA (BIOT MPA), to protect seven species of pelagic and reef-associated teleost and chondrichthyan fishes. We satellite-tagged 26 animals from six species (Blue Marlin, Reef Mantas, Sailfish, Silky Sharks, Silvertip Sharks, and Yellowfin Tuna), producing 2,735 days of movement data. We also acoustically tagged 121 sharks from two species (Grey Reef and Silvertip Sharks), which were monitored for up to 40 months across a large acoustic receiver array spanning the MPA. We found that the activity spaces of all satellite-tagged animals, including pelagic species, were much smaller than the area of the BIOT MPA, even taking into account errors associated with position estimates. Estimates of space use of acoustically tagged sharks, based on dynamic Brownian Bridge Movement Models (dBBMM), were also much smaller than the size of the MPA. However, we found important limitations when using dBBMM and demonstrate its sensitivity to both study duration and array design. We found that Grey Reef Sharks should be monitored for at least 1 year and Silvertip Sharks for 2 years before their activity space can be effectively estimated. We also demonstrate the potentially important role that intraspecific variability in spatial ecology may play in influencing the ability of MPAs to effectively protect populations of mobile species. Overall, our results suggest that, with effective enforcement, MPAs on the scale of the BIOT MPA potentially offer protection to a variety of pelagic and reef species with a range of spatial ecologies. We suggest that animals need to be tagged across seasons, years, and ontogenetic stages, in order to fully characterize their spatial ecology, which is fundamental to developing and implementing effective MPAs to conserve the full life history of target species

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements
    corecore