2,562 research outputs found
Practical Experience with 'Electronic Nose' Systems for Monitoring the Quality of Dairy Products
The present paper reports some practical experience acquired by testing five sensor technologies and four instruments over approximately one year with Swiss Emmental cheese samples of different stage of ripening. Up to now, the metal-oxide semiconductor (MOS) technology has given the
best discrimination between the measured samples. However, sensors of this type seem to be damaged by short-chain fatty acids released from Swiss Emmental cheese. Organic conducting polymer sensors showed a poor sensitivity to volatile components of cheese, the main problem being a rapid drift
of the sensors. The response of quartz microbalance sensors was too weak to detect differences between cheese samples. Discrimination using a newly designed mass-spectrometry system was difficult due to the low sensitivity of this instrument for the volatile compounds of cheese. Metal-oxide
semiconductor field effect transistor sensors did not give good discrimination between the samples. However, their combination with MOS sensors seems to produce a favourable system for application in cheese evaluation. Further studies with other types of cheese and other dairy products are
still necessary to define reliable and practical applications of this analytical tool in the dairy industry
Preservation of Positivity by Dynamical Coarse-Graining
We compare different quantum Master equations for the time evolution of the
reduced density matrix. The widely applied secular approximation (rotating wave
approximation) applied in combination with the Born-Markov approximation
generates a Lindblad type master equation ensuring for completely positive and
stable evolution and is typically well applicable for optical baths. For phonon
baths however, the secular approximation is expected to be invalid. The usual
Markovian master equation does not generally preserve positivity of the density
matrix. As a solution we propose a coarse-graining approach with a dynamically
adapted coarse graining time scale. For some simple examples we demonstrate
that this preserves the accuracy of the integro-differential Born equation. For
large times we analytically show that the secular approximation master equation
is recovered. The method can in principle be extended to systems with a
dynamically changing system Hamiltonian, which is of special interest for
adiabatic quantum computation. We give some numerical examples for the
spin-boson model of cases where a spin system thermalizes rapidly, and other
examples where thermalization is not reached.Comment: 18 pages, 7 figures, reviewers suggestions included and tightened
presentation; accepted for publication in PR
Signatures of the Unruh effect from electrons accelerated by ultra-strong laser fields
We calculate the radiation resulting from the Unruh effect for strongly
accelerated electrons and show that the photons are created in pairs whose
polarizations are maximally entangled. Apart from the photon statistics, this
quantum radiation can further be discriminated from the classical (Larmor)
radiation via the different spectral and angular distributions. The signatures
of the Unruh effect become significant if the external electromagnetic field
accelerating the electrons is not too far below the Schwinger limit and might
be observable with future facilities. Finally, the corrections due to the
birefringent nature of the QED vacuum at such ultra-high fields are discussed.
PACS: 04.62.+v, 12.20.Fv, 41.60.-m, 42.25.Lc.Comment: 4 pages, 1 figur
On the Canonical Reduction of Spherically Symmetric Gravity
In a thorough paper Kuchar has examined the canonical reduction of the most
general action functional describing the geometrodynamics of the maximally
extended Schwarzschild geometry. This reduction yields the true degrees of
freedom for (vacuum) spherically symmetric general relativity. The essential
technical ingredient in Kuchar's analysis is a canonical transformation to a
certain chart on the gravitational phase space which features the Schwarzschild
mass parameter , expressed in terms of what are essentially
Arnowitt-Deser-Misner variables, as a canonical coordinate. In this paper we
discuss the geometric interpretation of Kuchar's canonical transformation in
terms of the theory of quasilocal energy-momentum in general relativity given
by Brown and York. We find Kuchar's transformation to be a ``sphere-dependent
boost to the rest frame," where the ``rest frame'' is defined by vanishing
quasilocal momentum. Furthermore, our formalism is general enough to cover the
case of (vacuum) two-dimensional dilaton gravity. Therefore, besides reviewing
Kucha\v{r}'s original work for Schwarzschild black holes from the framework of
hyperbolic geometry, we present new results concerning the canonical reduction
of Witten-black-hole geometrodynamics.Comment: Revtex, 35 pages, no figure
SDSS Observations of Kuiper Belt Objects: Colors and Variability
Colors of Trans Neptunian Objects (TNOs) are used to study the evolutionary
processes of bodies in the outskirts of the Solar System, and to test theories
regarding their origin. Here I describe a search for serendipitous Sloan
Digital Sky Survey (SDSS) observations of known TNOs and Centaurs. I present a
catalog of SDSS photometry, colors and astrometry of 388 measurements of 42
outer Solar-System objects. I find a weak evidence, at the ~2-sigma level (per
trial), for a correlation between the g-r color and inclination of scattered
disk objects and hot classical KBOs. I find a correlation between the g-r color
and the angular momentum in the z direction of all the objects in this sample.
Light curves as a function of phase angle are constructed for 13 objects. The
steepness of the slopes of these light curves suggests that the coherent
backscatter mechanism plays a major role in the reflectivity of outer
Solar-System small objects at small phase angles. I find a weak evidence for an
anti-correlation, significant at the 2-sigma confidence level (per trial),
between the g-band phase angle slope parameter and the semi-major axis, as well
as the aphelion distance, of these objects. I discuss the origin of this
possible correlation and argue that if this correlation is real it probably
indicates that "Sedna"-like objects have a different origin than other classes
of TNOs. Finally, I identify several objects with large variability amplitudes
(abridged).Comment: 8 pages, ApJ in pres
The Luminosity & Mass Function of the Trapezium Cluster: From B stars to the Deuterium Burning Limit
We use the results of a new, multi-epoch, multi-wavelength, near-infrared
census of the Trapezium Cluster in Orion to construct and to analyze the
structure of its infrared (K band) luminosity function. Specifically, we employ
an improved set of model luminosity functions to derive this cluster's
underlying Initial Mass Function (IMF) across the entire range of mass from OB
stars to sub-stellar objects down to near the deuterium burning limit. We
derive an IMF for the Trapezium Cluster that rises with decreasing mass, having
a Salpeter-like IMF slope until near ~0.6 M_sun where the IMF flattens and
forms a broad peak extending to the hydrogen burning limit, below which the IMF
declines into the sub-stellar regime. Independent of the details, we find that
sub-stellar objects account for no more than ~22% of the total number of likely
cluster members. Further, the sub-stellar Trapezium IMF breaks from a steady
power-law decline and forms a significant secondary peak at the lowest masses
(10-20 times the mass of Jupiter). This secondary peak may contain as many as
\~30% of the sub-stellar objects in the cluster. Below this sub-stellar IMF
peak, our KLF modeling requires a subsequent sharp decline toward the planetary
mass regime. Lastly, we investigate the robustness of pre-main sequence
luminosity evolution as predicted by current evolutionary models, and we
discuss possible origins for the IMF of brown dwarfs.Comment: 74 pages, 30 figures, AASTeX5.0. To be published in the 01 July 2002
ApJ. For color version of figure 1 and online data table see
http://www.astro.ufl.edu/~muench/PUB/publications.htm
Quantization of Field Theories Generalizing Gravity-Yang-Mills Systems on the Cylinder
Pure gravity and gauge theories in two dimensions are shown to be special
cases of a much more general class of field theories each of which is
characterized by a Poisson structure on a finite dimensional target space. A
general scheme for the quantization of these theories is formulated. Explicit
examples are studied in some detail. In particular gravity and gauge theories
with equivalent actions are compared. Big gauge transformations as well as the
condition of metric nondegeneracy in gravity turn out to cause significant
differences in the structure of the corresponding reduced phase spaces and the
quantum spectra of Dirac observables. For gravity coupled to SU(2) Yang
Mills the question of quantum dynamics (`problem of time') is addressed. [This
article is a contribution to the proceedings (to appear in LNP) of the 3rd
Baltic RIM Student Seminar (1993). Importance is attached to concrete examples.
A more abstract presentation of the ideas underlying this article (including
new developments) is found in hep-th/9405110.]Comment: 26, pages, TUW-94-
The importance of calcium and amorphous silica for arctic soil CO<sub>2</sub> production
Future warming of the Arctic not only threatens to destabilize the enormous pool of organic carbon accumulated in permafrost soils but may also mobilize elements such as calcium (Ca) or silicon (Si). While for Greenlandic soils, it was recently shown that both elements may have a strong effect on carbon dioxide (CO2) production with Ca strongly decreasing and Si increasing CO2 production, little is known about the effects of Si and Ca on carbon cycle processes in soils from Siberia, the Canadian Shield, or Alaska. In this study, we incubated five different soils (rich organic soil from the Canadian Shield and from Siberia (one from the top and one from the deeper soil layer) and one acidic and one non-acidic soil from Alaska) for 6 months under both drained and waterlogged conditions and at different Ca and amorphous Si (ASi) concentrations. Our results show a strong decrease in soil CO2 production for all soils under both drained and waterlogged conditions with increasing Ca concentrations. The ASi effect was not clear across the different soils used, with soil CO2 production increasing, decreasing, or not being significantly affected depending on the soil type and if the soils were initially drained or waterlogged. We found no methane production in any of the soils regardless of treatment. Taking into account the predicted change in Si and Ca availability under a future warmer Arctic climate, the associated fertilization effects would imply potentially lower greenhouse gas production from Siberia and slightly increased greenhouse gas emissions from the Canadian Shield. Including Ca as a controlling factor for Arctic soil CO2 production rates may, therefore, reduces uncertainties in modeling future scenarios on how Arctic regions may respond to climate change
In vitro effects of 0 to 120 Grays of irradiation on bone viability and release of growth factors
Background: High dose radiation therapy is commonly used in maxillofacial surgeries to treat a number of head and neck tumors. Despite its widespread use, little information is available regarding the effects of irradiation on bone cell viability and release of growth factors following dose-dependent irradiation.
Methods: Bone samples were collected from porcine mandibular cortical bone and irradiated at doses of 0, 7.5, 15, 30, 60 and 120 Grays. Thereafter, cell viability was quantified, and the release of growth factors including TGFβ1, BMP2, VEGF, IL1β and RANKL were investigated over time.
Results: It was observed that at only 7.5Gy of irradiation, over 85 % of cells were non-vital and by 60 Gy, all cells underwent apoptosis. Furthermore, over a 7-fold decrease in VEGF and a 2-fold decrease in TGFβ1 were observed following irradiation at all tested doses. Little change was observed for BMP2 and IL1β whereas RANKL was significantly increased for all irradiated samples.
Conclusions: These results demonstrate the pronounced effects of irradiation on bone-cell vitality and subsequent release of growth factors. Interestingly, the largest observed change in gene expression was the 7-fold decrease in VEGF protein following irradiation. Future research aimed at improving our understanding of bone following irradiation is necessary to further improve future clinical treatments
- …