111 research outputs found

    THE RELATIONSHIP BETWEEN CLINICIAN-PERCEIVED COMPETENCY AND EXPERT-RATED COMPETENCY IN REBT USING ANXIETY-FOCUSED SIMULATED-BASED PRACTICE

    Get PDF
    Though competency is of utmost importance to clinical practice (Muse et al., 2022), there have been minimal studies that have explored the relationship between clinician-perceived competency and expert-rated competency with the REBT framework. Competency in the delivery of psychotherapy is expected, but not well-defined (Fairburn & Cooper, 2011). Differences between perceived competency and expert-rated competency (Paunov et al., 2023) create further challenges in defining competency. While clinical competency in psychotherapy provision has been linked to client outcomes, this relationship varies depending on clinical model of psychotherapy as well as clinical problem (Collyer et al., 2020). Most of the competency in psychotherapy research focuses on adults and on Cognitive Behavior Therapy (Rapley & Loades, 2018). This study aimed to extend this research in examining psychotherapy competency in the utilization of Rational Emotive Behavior Therapy (REBT) in work with youth with anxiety in a simulated clinical setting. Clinicians with varying degrees of training in REBT responded to five video-based vignettes using the clinical training software, Skillsetter and were asked to respond to clients demonstrating many of the core features of REBT. Experts in REBT rated their responses and participants also rated the skills being assessed. There was some variability in terms of skill ratings and a small correlation was found between self-perceived ratings and expert-coded ratings. Limitations of the current study, future direction, and implications for the field of school psychology and for those engaging in psychotherapy are discussed

    Predictors of orbital convergence in primates: A test of the snake detection hypothesis of primate evolution

    Get PDF
    Traditional explanations for the evolution of high orbital convergence and stereoscopic vision in primates have focused on how stereopsis might have aided early primates in foraging or locomoting in an arboreal environment. It has recently been suggested that predation risk by constricting snakes was the selective force that favored the evolution of orbital convergence in early primates, and that later exposure to venomous snakes favored further degrees of convergence in anthropoid primates. Our study tests this snake detection hypothesis (SDH) by examining whether orbital convergence among extant primates is indeed associated with the shared evolutionary history with snakes or the risk that snakes pose for a given species. We predicted that orbital convergence would be higher in species that: 1) have a longer history of sympatry with venomous snakes, 2) are likely to encounter snakes more frequently, 3) are less able to detect or deter snakes due to group size effects, and 4) are more likely to be preyed upon by snakes. Results based on phylogenetically independent contrasts do not support the SDH. Orbital convergence shows no relationship to the shared history with venomous snakes, likelihood of encountering snakes, or group size. Moreover, those species less likely to be targeted as prey by snakes show significantly higher values of orbital convergence. Although an improved ability to detect camouflaged snakes, along with other cryptic stimuli, is likely a consequence of increased orbital convergence, this was unlikely to have been the primary selective force favoring the evolution of stereoscopic vision in primates

    A Role for Cdc42 in Macrophage Chemotaxis

    Get PDF
    Three members of the Rho family, Cdc42, Rac, and Rho are known to regulate the organization of actin-based cytoskeletal structures. In Bac1.2F5 macrophages, we have shown that Rho regulates cell contraction, whereas Rac and Cdc42 regulate the formation of lamellipodia and filopodia, respectively. We have now tested the roles of Cdc42, Rac, and Rho in colony stimulating factor-1 (CSF-1)–induced macrophage migration and chemotaxis using the Dunn chemotaxis chamber. Microinjection of constitutively activated RhoA, Rac1, or Cdc42 inhibited cell migration, presumably because the cells were unable to polarize significantly in response to CSF-1. Both Rho and Rac were required for CSF-1–induced migration, since migration speed was reduced to background levels in cells injected with C3 transferase, an inhibitor of Rho, or with the dominant-negative Rac mutant, N17Rac1. In contrast, cells injected with the dominant-negative Cdc42 mutant, N17Cdc42, were able to migrate but did not polarize in the direction of the gradient, and chemotaxis towards CSF-1 was abolished

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    Get PDF
    Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    The Role of Eosinophils in Bullous Pemphigoid: A Developing Model of Eosinophil Pathogenicity in Mucocutaneous Disease

    Get PDF
    Bullous pemphigoid (BP) is an autoimmune blistering disease which carries a significant mortality and morbidity. While historically BP has been characterized as an IgG driven disease mediated by anti-BP180 and BP230 IgG autoantibodies, developments in recent years have further elucidated the role of eosinophils and IgE autoantibodies. In fact, eosinophil infiltration and eosinophilic spongiosis are prominent features in BP. Several observations support a pathogenic role of eosinophils in BP: IL-5, eotaxin, and eosinophil-colony stimulating factor are present in blister fluid; eosinophils line the dermo-epidermal junction (DEJ) in the presence of BP serum, metalloprotease-9 is released by eosinophils at the site of blisters; eosinophil degranulation proteins are found on the affected basement membrane zone as well as in serum corresponding with clinical disease; eosinophil extracellular DNA traps directed against the basement membrane zone are present, IL-5 activated eosinophils cause separation of the DEJ in the presence of BP serum; and eosinophils are the necessary cell required to drive anti-BP180 IgE mediated skin blistering. Still, it is likely that eosinophils contribute to the pathogenesis of BP in numerous other ways that have yet to be explored based on the known biology of eosinophils. We herein will review the role of eosinophils in BP and provide a framework for understanding eosinophil pathogenic mechanisms in mucocutaneous disease

    Die Fluorierung des Silbers und Kupfers

    No full text

    Biocontrol program targets Asian citrus psyllid in California's urban areas

    No full text
    In California, Asian citrus psyllid vectors the bacterium Candidatus Liberibacter asiaticus, which causes the lethal citrus disease huanglongbing. The top priority for California's citrus industry has been to diminish the rate of bacterium spread by reducing Asian citrus psyllid populations in urban areas, where this pest primarily resides. Attempts at eradicating and containing the psyllid with insecticides were unsuccessful. An alternative approach has been a classical biological control program using two parasitoids from Pakistan, Tamarixia radiata and Diaphorencyrtus aligarhensis, which attack the psyllid nymphs. T. radiata has established widely and, in combination with generalist predators, natural enemies are providing substantial control of psyllids in urban areas
    corecore