10 research outputs found

    Patterns of interstitial inflammation during the evolution of renal injury in experimental aristolochic acid nephropathy.

    No full text
    BACKGROUND: Interstitial inflammation is a prominent feature associated with the severity of renal injury and progressive kidney failure. We utilized an animal model of aristolochic acid (AA)-induced nephropathy (AAN) to assess patterns of infiltration and inflammation during the evolution of tubulointerstitial damage and to relate them to the development of fibrosis. METHODS: Male Wistar rats receiving sc daily AA or vehicle were sacrificed between Days 1 and 35. Infiltrating mononuclear cells were characterized by immunohistochemistry. The kidney infiltrating T lymphocytes were phenotyped by flow cytometry. Urinary levels of Th-1/ Th-2 cytokines, of monocyte chemoattractant protein-1 and of active transforming growth factor-beta (TGF-beta) were measured. Tissue expression of phosphorylated smad 2/3 protein was used to examine the TGF-beta signalling pathway. RESULTS: In AA rats, monocytes/macrophages and T lymphocytes predominantly infiltrated areas of necrotic proximal tubular cells. The coexpressions of ED1 and/or Ki-67/MHCII by infiltrating cells reflected monocyte/macrophage proliferation and their activation, respectively. The accumulation of cytotoxic T lymphocytes was attested by severe signs of CD8+ cell tubulitis. The CD8/E-cadherin costaining confirmed intrarenal homing of CD8+CD103+ cells. Urinary levels of proinflammatory cytokines and of active TGF-beta significantly increased at Days 10 and 35. An early and persistent nuclear overexpression of phosphorylated smad 2/3 protein was detected in tubular and interstitial compartments. CONCLUSION: An early and massive interstitial inflammation characterized by activated monocytes/macrophages and cytotoxic CD8+CD103+ T lymphocytes is demonstrated for the first time during the progression of experimental AAN. The involvement in an interstitial fibrosis onset of active TGF-beta is highly suggested, at least via the psmad 2/3 intracellular signalling pathway.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    The Changing Role Of Pathology In Modern Safety Evaluation

    No full text

    Tubular atrophy in the pathogenesis of chronic kidney disease progression

    No full text

    Pathophysiology of Progressive Renal Disease in Children

    No full text

    Tubular and interstitial factors in the progression of glomerulonephritis

    No full text

    Chronic Interstitial Nephritis

    No full text

    Tubulointerstitial nephritis

    No full text
    corecore