77 research outputs found
Papillary carcinoma of the thyroid: methylation is not involved in the regulation of MET expression
Hypomethylation has been reported to be responsible for the activation of several oncogenes. The possibility that hypomethylation is involved in the regulation of MET transcription was investigated through the analysis of the methylation status of one CpG island containing 43 CpGs in six cases of papillary carcinoma, in the corresponding normal thyroid tissue, and in two cases of hyperplastic goitre. Evidence of methylation was not found in any of the analysed CpG. © 2004 Cancer Research UK
Cystatin E/M suppresses legumain activity and invasion of human melanoma
<p>Abstract</p> <p>Background</p> <p>High activity of cysteine proteases such as legumain and the cathepsins have been shown to facilitate growth and invasion of a variety of tumor types. In breast cancer, several recent studies have indicated that loss of the cysteine protease inhibitor cystatin E/M leads to increased growth and metastasis. Although cystatin E/M is normally expressed in the skin, its role in cysteine protease regulation and progression of malignant melanoma has not been studied.</p> <p>Methods</p> <p>A panel of various non-melanoma and melanoma cell lines was used. Cystatin E/M and C were analyzed in cell media by immunoblotting and ELISA. Legumain, cathepsin B and L were analyzed in cell lysates by immunoblotting and their enzymatic activities were analyzed by peptide substrates. Two melanoma cell lines lacking detectable secretion of cystatin E/M were transfected with a cystatin E/M expression plasmid (pCST6), and migration and invasiveness were studied by a Matrigel invasion assay.</p> <p>Results</p> <p>Cystatin E/M was undetectable in media from all established melanoma cell lines examined, whereas strong immunobands were detected in two of five primary melanoma lines and in two of six lines derived from patients with metastatic disease. Among the four melanoma lines secreting cystatin E/M, the glycosylated form (17 kD) was predominant compared to the non-glycosylated form (14 kD). Legumain, cathepsin B and L were expressed and active in most of the cell lines, although at low levels in the melanomas expressing cystatin E/M. In the melanoma lines where cystatin E/M was secreted, cystatin C was generally absent or expressed at a very low level. When melanoma cells lacking secretion of cystatin E/M were transfected with pCST6, their intracellular legumain activity was significantly inhibited. In contrast, cathepsin B activity was not affected. Furthermore, invasion was suppressed in cystatin E/M over-expressing melanoma cell lines as measured by the transwell Matrigel assay.</p> <p>Conclusions</p> <p>These results suggest that the level of cystatin E/M regulates legumain activity and hence the invasive potential of human melanoma cells.</p
Cross-Regulation between Oncogenic BRAFV600E Kinase and the MST1 Pathway in Papillary Thyroid Carcinoma
BACKGROUND:The BRAF(V600E) mutation leading to constitutive signaling of MEK-ERK pathways causes papillary thyroid cancer (PTC). Ras association domain family 1A (RASSF1A), which is an important regulator of MST1 tumor suppressor pathways, is inactivated by hypermethylation of its promoter region in 20 to 32% of PTC. However, in PTC without RASSF1A methylation, the regulatory mechanisms of RASSF1A-MST1 pathways remain to be elucidated, and the functional cooperation or cross regulation between BRAF(V600E) and MST1,which activates Foxo3,has not been investigated. METHODOLOGY/PRINCIPAL FINDINGS:The negative regulators of the cell cycle, p21 and p27, are strongly induced by transcriptional activation of FoxO3 in BRAF(V600E) positive thyroid cancer cells. The FoxO3 transactivation is augmented by RASSF1A and the MST1 signaling pathway. Interestingly, introduction of BRAF(V600E)markedly abolished FoxO3 transactivation and resulted in the suppression of p21 and p27 expression. The suppression of FoxO3 transactivation by BRAF(V600E)is strongly increased by coexpression of MST1 but it is not observed in the cells in which MST1, but not MST2,is silenced. Mechanistically, BRAF(V600E)was able to bind to the C-terminal region of MST1 and resulted in the suppression of MST1 kinase activities. The induction of the G1-checkpoint CDK inhibitors, p21 and p27,by the RASSF1A-MST1-FoxO3 pathway facilitates cellular apoptosis, whereas addition of BRAF(V600E) inhibits the apoptotic processes through the inactivation of MST1. Transgenic induction of BRAF(V600E)in the thyroid gland results in cancers resembling human papillary thyroid cancers. The development of BRAF(V600E)transgenic mice with the MST1 knockout background showed that these mice had abundant foci of poorly differentiated carcinomas and large areas without follicular architecture or colloid formation. CONCLUSIONS/SIGNIFICANCE:The results of this study revealed that the oncogenic effect of BRAF(V600E) is associated with the inhibition of MST1 tumor suppressor pathways, and that the activity of RASSF1A-MST1-FoxO3 pathways determines the phenotypes of BRAF(V600E) tumors
Valproic Acid Initiates Transdifferentiation of the Human Ductal Adenocarcinoma Cell-line Panc-1 Into alpha-Like Cells
Non-mesenchymal pancreatic cells are a potential source for cell replacement. Their transdifferentiation can be achieved by triggering epigenetic remodeling through e. g. post-translational modification of histones. Valproic acid, a branched-chain saturated fatty acid with histone deacetylase inhibitor activity, was linked to the expression of key transcription factors of pancreatic lineage in epithelial cells and insulin transcription. However, the potential of valproic acid to cause cellular reprogramming is not fully understood. To shed further light on it we employed next-generation RNA sequencing, real-time PCR, and protein analyses by ELISA and western blot, to assess the impact of valproic acid on transcriptome and function of Panc-1-cells. Our results indicate that valproic acid has a significant impact on the cell cycle, cell adhesion, histone H3 acetylation, and metabolic pathways as well as the initiation of epithelial-mesenchymal transition through acetylation of histone H3 resulting in alpha-cell-like characteristics. We conclude that human epithelial pancreatic cells can be transdifferentiated into cells with endocrine properties through epigenetic regulation by valproic acid favoring an alpha-cell-like phenotype
- …