20 research outputs found
A novel role for 3, 4-dichloropropionanilide (DCPA) in the inhibition of prostate cancer cell migration, proliferation, and hypoxia-inducible factor 1alpha expression
Background
The amide class compound, 3, 4-dichloropropionanilide (DCPA) is known to affect multiple signaling pathways in lymphocyte and macrophage including the inhibition of NF-κB ability. However, little is known about the effect of DCPA in cancer cells. Hypoxia-inducible factor 1 (HIF-1) regulates the expression of many genes including vascular endothelial growth factor (VEGF), heme oxygenase 1, inducible nitric oxide synthase, aldolase, enolase, and lactate dehydrogenase A. HIF-1 expression is associated with tumorigenesis and angiogenesis. Methods
We used Transwell assay to study cell migration, and used immunoblotting to study specific protein expression in the cells. Results
In this report, we demonstrate that DCPA inhibited the migration and proliferation of DU145 and PC-3 prostate cancer cells induced by serum, insulin, and insulin-like growth factor I (IGF-I). We found that DCPA inhibited HIF-1 expression in a subunit-specific manner in these cancer cell lines induced by serum and growth factors, and decreased HIF-1α expression by affecting its protein stability. Conclusion
DCPA can inhibit prostate cancer cell migration, proliferation, and HIF-1α expression, suggesting that DCPA could be potentially used for therapeutic purpose for prostate cancer in the future
Alteration of pulmonary immunity to Listeria monocytogenes by diesel exhaust particles (DEPs). I. Effects of DEPs on early pulmonary responses.
It has been hypothesized that diesel exhaust particles (DEPs) aggravate pulmonary bacterial infection by both innate and cell-mediated immune mechanisms. To test this hypothesis, we investigated the effects of DEP exposure on the functions of alveolar macrophages (AMs) and lymphocytes from lung-draining lymph nodes using a rat Listeria monocytogenes infection model. In the present study, we focused on the effects of DEP exposure on AM functions, including phagocytic activity and secretion of proinflammatory cytokines. The Listeria infection model was characterized by an increase in neutrophil count, albumin content, and acellular lactate dehydrogenase activity in the bronchoalveolar lavage (BAL) fluid at 3 and 7 days postinfection. Short-term DEP inhalation (50 and 100 mg/m(3), 4 hr) resulted in a dose-dependent suppression of lung clearance of Listeria, with the highest bacteria count occurring at day 3. This aggravated bacterial infection was consistent with the inhibitory effect of DEPs on macrophage functions. DEPs suppressed phagocytosis and Listeria-induced basal secretion of interleukin-1ss (IL-1ss) and IL-12 by AMs in a dose-dependent manner. The amount of IL-1ss and IL-12 in the BAL fluid was also reduced by DEP exposure. In addition, DEPs decreased Listeria-induced lipopolysaccharide-stimulated secretion of tumor necrosis factor-alpha (TNF-alpha), IL-1ss, and IL-12 from AMs. These results suggest that DEPs retard bacterial clearance by inhibiting AM phagocytosis and weaken the innate immunity by inhibiting AM secretion of IL-1ss and TNF-alpha. DEPs may also suppress cell-mediated immunity by inhibiting AM secretion of IL-12, a key cytokine for the initiation of T helper type 1 cell development in Listeria infection
Alteration of pulmonary immunity to Listeria monocytogenes by diesel exhaust particles (DEPs). II. Effects of DEPs on T-cell-mediated immune responses in rats.
Previously, we showed that diesel exhaust particles (DEPs) suppressed pulmonary clearance of Listeria monocytogenes (Listeria) and inhibited the phagocytosis of alveolar macrophages and their response to Listeria in the secretion of interleukin (IL)-1 beta, tumor necrosis factor alpha, and IL-12. In this report we examined the effects of DEPs and/or Listeria on T-cell development and secretion of IL-2, IL-6, and interferon (IFN)-gamma. We exposed Brown Norway rats to clean air or DEPs at 50 or 100 mg/m3 for 4 hr by nose-only inhalation and inoculated with 100,000 Listeria. Lymphocytes in the lung-draining lymph nodes were isolated at 3 and 7 days postexposure, analyzed for CD4+ and CD8+ cells, and measured for cytokine production in response to concanavalin A or heat-killed L. monocytogenes. Listeria infection induced lymphocyte production of IL-6. At 7 days postinfection, lymphocytes from Listeria-infected rats showed significant increases in CD4+ and CD8+ cell counts and the CD8+/CD4+ ratio and exhibited increased production of IFN-gamma and IL-2 receptor expression compared with the noninfected control. These results suggest an immune response that involves the action of IL-6 on T-cell activation, yielding Listeria-specific CD8+ cells. DEP exposure alone enhanced lymphocyte production of both IL-2 and IL-6 but inhibited lymphocyte secretion of IFN-gamma. In rats exposed to 100 mg/m3 DEPs and Listeria, a 10-fold increase occurred in pulmonary bacterial count at 3 days postinfection when compared with the Listeria-only exposure group. The isolated lymphocytes showed a significant increase in the CD4+ and CD8+ cell counts and the CD8+/CD4+ ratio and exhibited increased IL-2 responsiveness and increased capacity in the secretion of IL-2, IL-6, and IFN-gamma. This T-cell immune response was sufficient to allow the Brown Norway rats to clear the bacteria at 7 days postinfection and overcome the down-regulation of the innate immunity by the acute DEP exposure
Additional file 1 of XX sex chromosome complement modulates immune responses to heat-killed Streptococcus pneumoniae immunization in a microbiome-dependent manner
Additional file 1: Figure S1. Four Core Genotype breeding strategy and offspring genotypes
Suppression of arthritis-induced bone erosion by a CRAC channel antagonist
OBJECTIVE: We have shown in vitro and in vivo that osteoclast maturation requires calcium-release activated calcium (CRAC) channels. In inflammatory arthritis, osteoclasts mediate severe and debilitating bone erosion. In the current study, we assess the value of CRAC channels as a therapeutic target to suppress bone erosion in acute inflammatory arthritis. METHODS: Collagen-induced arthritis (CIA) was induced in mice. The CRAC channel inhibitor 3,4-dichloropropionaniline (DCPA) and a placebo was administered 1 day prior to collagen II booster to induce arthritis. Effects on swelling, inflammatory cell invasion in joints, serum cytokines and bone erosion were measured. RESULTS: Assays, by blinded observers, of arthritis severity showed that DCPA, 21 mg/kg/day, suppressed arthritis development over 3 weeks. Bone and cartilage damage in sections of animal feet was reduced approximately 50%; overall swelling of joints was reduced by a similar amount. Effects on bone density by µCT showed clear separation in DCPA-treated CIA animals from CIA without treatment, while differences between controls without CIA and CIA treated with DCPA differed by small amounts and in most cases were not statistically different. Response was not related to anticollagen titres. There were no adverse effects in the treated group on animal weight or activity, consistent with low toxicity. The effect was maximal 12–17 days after collagen booster, during the rapid appearance of arthritis in untreated CIA. At 20 days after treatment (day 40), differences in arthritis score were reduced and tumour necrosis factor α, interleukin (IL)-1, or IL-6 in the serum of the animals were similar in treated and untreated animals. CONCLUSIONS: DCPA, a novel inhibitor of CRAC channels, suppresses bone erosion associated with acute arthritis in mice and might represent a new treatment modality for acute arthrits
Suppression of Arthritis-Induced Bone Erosion by a CRAC Channel Antagonist
Objective: We have shown in vitro and in vivo that osteoclast maturation requires calcium-release activated calcium (CRAC) channels. In inflammatory arthritis, osteoclasts mediate severe and debilitating bone erosion. In the current study, we assess the value of CRAC channels as a therapeutic target to suppress bone erosion in acute inflammatory arthritis. Methods: Collagen-induced arthritis (CIA) was induced in mice. The CRAC channel inhibitor 3,4- dichloropropionaniline (DCPA) and a placebo was administered 1 day prior to collagen II booster to induce arthritis. Effects on swelling, inflammatory cell invasion in joints, serum cytokines and bone erosion were measured. Results: Assays, by blinded observers, of arthritis severity showed that DCPA, 21 mg/kg/day, suppressed arthritis development over 3 weeks. Bone and cartilage damage in sections of animal feet was reduced approximately 50%; overall swelling of joints was reduced by a similar amount. Effects on bone density by µCT showed clear separation in DCPA-treated CIA animals from CIA without treatment, while differences between controls without CIA and CIA treated with DCPA differed by small amounts and in most cases were not statistically different. Response was not related to anticollagen titres. There were no adverse effects in the treated group on animal weight or activity, consistent with low toxicity. The effect was maximal 12–17 days after collagen booster, during the rapid appearance of arthritis in untreated CIA. At 20 days after treatment (day 40), differences in arthritis score were reduced and tumour necrosis factor α, interleukin (IL)-1, or IL-6 in the serum of the animals were similar in treated and untreated animals. Conclusions: DCPA, a novel inhibitor of CRAC channels, suppresses bone erosion associated with acute arthritis in mice and might represent a new treatment modality for acute arthrits