4,001 research outputs found
The Vlasov limit and its fluctuations for a system of particles which interact by means of a wave field
In two recent publications [Commun. PDE, vol.22, p.307--335 (1997), Commun.
Math. Phys., vol.203, p.1--19 (1999)], A. Komech, M. Kunze and H. Spohn studied
the joint dynamics of a classical point particle and a wave type generalization
of the Newtonian gravity potential, coupled in a regularized way. In the
present paper the many-body dynamics of this model is studied. The Vlasov
continuum limit is obtained in form equivalent to a weak law of large numbers.
We also establish a central limit theorem for the fluctuations around this
limit.Comment: 68 pages. Smaller corrections: two inequalities in sections 3 and two
inequalities in section 4, and definition of a Banach space in appendix A1.
Presentation of LLN and CLT in section 4.3 improved. Notation improve
The Einstein-Vlasov sytem/Kinetic theory
The main purpose of this article is to guide the reader to theorems on global
properties of solutions to the Einstein-Vlasov system. This system couples
Einstein's equations to a kinetic matter model. Kinetic theory has been an
important field of research during several decades where the main focus has
been on nonrelativistic- and special relativistic physics, e.g. to model the
dynamics of neutral gases, plasmas and Newtonian self-gravitating systems. In
1990 Rendall and Rein initiated a mathematical study of the Einstein-Vlasov
system. Since then many theorems on global properties of solutions to this
system have been established. The Vlasov equation describes matter
phenomenologically and it should be stressed that most of the theorems
presented in this article are not presently known for other such matter models
(e.g. fluid models). The first part of this paper gives an introduction to
kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is
introduced. We believe that a good understanding of kinetic theory in
non-curved spacetimes is fundamental in order to get a good comprehension of
kinetic theory in general relativity.Comment: 31 pages. This article has been submitted to Living Rev. Relativity
(http://www.livingreviews.org
Material Symmetry to Partition Endgame Tables
Many games display some kind of material symmetry . That
is, some sets of game elements can be exchanged for another set of game
elements, so that the resulting position will be equivalent to the original
one, no matter how the elements were arranged on the board. Material
symmetry is routinely used in card game engines when they normalize
their internal representation of the cards.
Other games such as chinese dark chess also feature some form of
material symmetry, but it is much less clear what the normal form of a
position should be. We propose a principled approach to detect material
symmetry. Our approach is generic and is based on solving multiple rel-
atively small sub-graph isomorphism problems. We show how it can be
applied to chinese dark chess , dominoes , and skat .
In the latter case, the mappings we obtain are equivalent to the ones
resulting from the standard normalization process. In the two former
cases, we show that the material symmetry allows for impressive savings
in memory requirements when building endgame tables. We also show
that those savings are relatively independent of the representation of the
tables
Characterization of an alpha-L-fucosidase from the periodontal pathogen Tannerella forsythia
The periodontal pathogen Tannerella forsythia expresses several glycosidases which are linked to specific growth requirements and are involved in the invasion of host tissues. α-l-Fucosyl residues are exposed on various host glycoconjugates and, thus, the α-l-fucosidases predicted in the T. forsythia ATCC 43037 genome could potentially serve roles in host-pathogen interactions. We describe the molecular cloning and characterization of the putative fucosidase TfFuc1 (encoded by the bfo_2737 = Tffuc1 gene), previously reported to be present in an outer membrane preparation. In terms of sequence, this 51-kDa protein is a member of the glycosyl hydrolase family GH29. Using an artificial substrate, p-nitrophenyl-α-fucose (KM 670 ΌM), the enzyme was determined to have a pH optimum of 9.0 and to be competitively inhibited by fucose and deoxyfuconojirimycin. TfFuc1 was shown here to be a unique α(1,2)-fucosidase that also possesses α(1,6) specificity on small unbranched substrates. It is active on mucin after sialidase-catalyzed removal of terminal sialic acid residues and also removes fucose from blood group H. Following knock-out of the Tffuc1 gene and analyzing biofilm formation and cell invasion/adhesion of the mutant in comparison to the wild-type, it is most likely that the enzyme does not act extracellularly. Biochemically interesting as the first fucosidase in T. forsythia to be characterized, the biological role of TfFuc1 may well be in the metabolism of short oligosaccharides in the periplasm, thereby indirectly contributing to the virulence of this organism. TfFuc1 is the first glycosyl hydrolase in the GH29 family reported to be a specific α(1,2)-fucosidase
Trapped and excited w modes of stars with a phase transition and R>=5M
The trapped -modes of stars with a first order phase transition (a density
discontinuity) are computed and the excitation of some of the modes of these
stars by a perturbing shell is investigated. Attention is restricted to odd
parity (``axial'') -modes. With the radius of the star, its mass,
the radius of the inner core and the mass of such core, it is
shown that stars with can have several trapped -modes, as long
as . Excitation of the least damped -mode is confirmed for
a few models. All of these stars can only exist however, for values of the
ratio between the densities of the two phases, greater than . We also
show that stars with a phase transition and a given value of can have far
more trapped modes than a homogeneous single density star with the same value
of , provided both and are smaller than 3. If the
phase transition is very fast, most of the stars with trapped modes are
unstable to radial oscillations. We compute the time of instability, and find
it to be comparable to the damping of the -mode excited in most cases where
-mode excitation is likely. If on the other hand the phase transition is
slow, all the stars are stable to radial oscillations.Comment: To appear in Physical Review
Relics of the Cosmological QCD Phase Transition
The abundance and size distribution of quark nuggets (QN), formed a few
microseconds after the big bang due to first order QCD phase transition in the
early universe, has been estimated. It appears that stable QNs could be a
viable candidate for cosmological dark matter. The evolution of baryon
inhomogeneity due to evaporated (unstable) QNs are also examined.Comment: To appear in Physical Review
A non-variational approach to nonlinear stability in stellar dynamics applied to the King model
In previous work by Y. Guo and G. Rein, nonlinear stability of equilibria in
stellar dynamics, i.e., of steady states of the Vlasov-Poisson system, was
accessed by variational techniques. Here we propose a different,
non-variational technique and use it to prove nonlinear stability of the King
model against a class of spherically symmetric, dynamically accessible
perturbations. This model is very important in astrophysics and was out of
reach of the previous techniques
Principal component and factor analytic models in international sire evaluation
<p>Abstract</p> <p>Background</p> <p>Interbull is a non-profit organization that provides internationally comparable breeding values for globalized dairy cattle breeding programmes. Due to different trait definitions and models for genetic evaluation between countries, each biological trait is treated as a different trait in each of the participating countries. This yields a genetic covariance matrix of dimension equal to the number of countries which typically involves high genetic correlations between countries. This gives rise to several problems such as over-parameterized models and increased sampling variances, if genetic (co)variance matrices are considered to be unstructured.</p> <p>Methods</p> <p>Principal component (PC) and factor analytic (FA) models allow highly parsimonious representations of the (co)variance matrix compared to the standard multi-trait model and have, therefore, attracted considerable interest for their potential to ease the burden of the estimation process for multiple-trait across country evaluation (MACE). This study evaluated the utility of PC and FA models to estimate variance components and to predict breeding values for MACE for protein yield. This was tested using a dataset comprising Holstein bull evaluations obtained in 2007 from 25 countries.</p> <p>Results</p> <p>In total, 19 principal components or nine factors were needed to explain the genetic variation in the test dataset. Estimates of the genetic parameters under the optimal fit were almost identical for the two approaches. Furthermore, the results were in a good agreement with those obtained from the full rank model and with those provided by Interbull. The estimation time was shortest for models fitting the optimal number of parameters and prolonged when under- or over-parameterized models were applied. Correlations between estimated breeding values (EBV) from the PC19 and PC25 were unity. With few exceptions, correlations between EBV obtained using FA and PC approaches under the optimal fit were â„ 0.99. For both approaches, EBV correlations decreased when the optimal model and models fitting too few parameters were compared.</p> <p>Conclusions</p> <p>Genetic parameters from the PC and FA approaches were very similar when the optimal number of principal components or factors was fitted. Over-fitting increased estimation time and standard errors of the estimates but did not affect the estimates of genetic correlations or the predictions of breeding values, whereas fitting too few parameters affected bull rankings in different countries.</p
- âŠ